• Title/Summary/Keyword: Porous Model

Search Result 749, Processing Time 0.03 seconds

Experimental Investigation on the Efficiency of Reducing Air Bubble Formation by Installing Horizontal Porous Plate in the Submerged Outlet Structure of Power Plant (발전소 수중방류구조 내 수평유공판 설치에 따른 거품발생 저감효과에 관한 실험적 연구)

  • Oh, Sang-Ho;Oh, Young-Min;Kang, Keum-Seok;Kim, Ji-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.472-481
    • /
    • 2008
  • In this study hydraulic experiment was carried out to investigate the flow characteristics in the submerged outlet structure of Boryeong power plant and the efficiency of bubble reduction by installing horizontal porous plate in the outlet structure. The cross-sectional mean velocity in the submerged outlet structure was smaller than 1 m/s, the target value at the design stage to prevent bubble outflow to the open sea area. In addition, it was found that the maximum depth of bubble penetration is reduced 30 to 50% by installing the horizontal porous plate at the second falling location in the submerged outlet structure. It is expected that the total bubble amount entrained in the water will be most efficiently reduced by installing square-hole-shape porous plate of 20 cm hole size and making its central section as non-porous structure to dissipate the energy of falling water.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

An Experimental Study on the Application of Porous Scoria Concrete to Artificial Reefs for Soft Coral (연산호 육성용 어초 개발을 위한 송이 다공성 콘크리트의 적용성에 관한 실험적 연구)

  • HONG CHONG-HYUN;KIM MOON-HOON;KIM SEOK-CHEL;PARK SUNG-BAE;Ryu SEONG-PIL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.28-34
    • /
    • 2005
  • In the study application of volcanic scoria concrete to artificial reefs is investigated. Volcanic scoria is a natural volcanic product that shows light weight, mil/i-porous, and far-infrared irradiation characteristics. The properties of volcanic scoria concrete using Jeju scoria aggregate are evaluated by conducting a comprehensive series of tests on strength and void ratio. It is concluded that the volcanic scoria concrete has the sufficient strength of 4MPa-13MPa and adequate void ratio of $12\%-35\%$ to be accepted as artificial reef concrete. The field experiments are performed through observation by scuba diver's at the Seogwipo coast. Porous specimen and plane concrete specimen are prepared for comparison purposes. Seasonal changes of soft coral on the two series of test specimens were have been observed from Apr. 9, 2004 to Mar. 18, 2005. The soft coral is well grown on the porous specimen however there are no significant changes on the conventional plain concrete specimen. Thus it is concluded that the volcanic scoria concrete is highly suitable as artificial reef concrete.

A Study of the Control of Plume-Induced Flow over a Missile Afterbody (Missile Afterbody에서 Plume-Induced Flow의 제어에 관한 연구)

  • ;Young-Ki Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.45-48
    • /
    • 2003
  • The plume interference is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The base knowledge of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics in plume-freestream flow field. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation for Simple, Rounded, Porous-extension test model configurations. The present study simulates highly underexpanded exhaust plume effect on missile body at the transoni $c^ersonic speeds. In order to investigate the plume-induced separation phenomenon, Simple, Rounded and Porous-extension plate are attacked to the missile afterbody. The computational result shows that the rounded afterbody and the porous-extension wall attached at the missile base can alleviate the plume-induced shock wave and separation phenomenon and improve the control of the missile body.dy.

  • PDF

Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor

  • Wang, X.A.;Zhang, Dalin;Wang, Mingjun;Song, Ping;Wang, Shibao;Liang, Yu;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.708-720
    • /
    • 2020
  • Core-wide temperature distribution in sodium-cooled fast reactor plays a key role in its decay heat removal process, however the prediction for temperature distribution is quite complex due to the conjugate heat transfer between the assembly flow and the inter-wrapper flow. Hybrid medium model has been proposed for conjugate heat transfer modeling in the core. The core is modeled with a Realistic modeled inter-wrapper flow and hybrid medium modeled assembly flow. To validate present model, simulations for a three-assembly model were performed with Realistic modeling, traditional porous medium model and hybrid medium model, respectively. The influences of Uniform/Non-Uniform power distribution among assemblies and the Peclet number within the assembly flow have been considered. Compared to traditional porous medium model, present model shows a better agreement with in Realistic modeling prediction of the temperature distribution and the radial heat transfer between the inter-wrapper flow and the assembly flow.

Numerical Experiments on the Evaluation of Effective Permeability and Tunnel Excavation in the Three Dimensional Fracture Network Model (3차원 균열연결망 모델에서의 유효투수계수 평가 및 터널굴착 지하수 유동해석에 대한 수치실험)

  • 장근무
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.275-286
    • /
    • 1998
  • The effective permeability and the representative element volume(REV) of fracture network model were evaluated based on the parameters such as permeability tensor, principal permeability and the direction of principal permeability. The effective permeability ranges between the harmonic mean and the arithmetic mean of the local permeabilities of subdivided blocks. From the numerical experiments, which were for investigating the influence of model volume on the variation of flux for the cubic models, it was found that the variation of flux became reduced as the model volume approached REV. The variation of groundwater flux into the tunnel in the fracture network model was mainly dependent on the ratio of the tunnel length to model size rather than REV. And it was found that groundwater flux into the tunnel was not completely consistent between the fracture network model and the equivalent porous media model, especially when the ratio of the tunnel length to model size is small.

  • PDF

Groundwater Flow Model for the Pollutant Transport in Subsurface Porous Media Theory and Modeling (지하다공질(地下多孔質) 매체(媒體)속에서의 오염물질이동(汚染物質移動) 해석(解析)을 위한 지하수(地下水)흐름 모형(模型))

  • Cho, Won Cheal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.97-106
    • /
    • 1989
  • This paper is on the modeling of two-dimensional groundwater flow, which is the first step of the development of Dynamic System Model for groundwater flow and pollutant transport in subsurface porous media. The particular features of the model are its versatility and flexibility to deal with as many real-world problems as possible. Points as well as distributed sources/sinks are included to represent recharges/pumping and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Sources/sinks strength over each element and node, hydraulic head at each Dirichlet boundary node and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution methed for the matrix equation approximating the partial differential equation of groundwater flow. The model also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. The groundwater flow model shall be combined with the model of pollutant transport in subsurface porous media. Then the combined model, with the applications of the Eigenvalue technique and the Dynamic system theory, shall be improved to the Dynamic System Model which can simulate the real groundwater flow and the pollutant transport accurately and effectively for the analyses and predictions.

  • PDF

A Numerical Study on Beat Transfer from an Aluminum Foam Heat Sink by Impinging Air Jet in a Confined Channel (충돌 공기제트에서 국한 유로 내 발포 알루미늄 방열기의 열전달 수치해석)

  • Lee, Sang-Tae;Kim, Seo-Young;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.883-892
    • /
    • 2002
  • A numerical study has been carried out to investigate the flow and heat transfer from an aluminum foam heat sink in a confined channel. A uniform heat flux is given at the bottom of the aluminum foam heat sink, which is horizontally placed on the heated surface. The channel walls are assumed to be adiabatic. Cold air is supplied from the top opening of the channel and exhausted to the channel outlet. Comprehensive numerical solutions are acquired to the governing Wavier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium model f3r the region of porous media. Details of flow and thermal fields are examined over wide ranges of the principal parameters; i.e., the Reynolds number Re, the height of heat sink h/H, porosity $\varepsilon$and pore diameter ratio $R_{H}$.

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme (분리-혼합 기법을 이용한 일방향 다공성 복합재료의 열탄성 계수 예측)

  • Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • A thermo-poro-elastic constitutive model of unidirectionally fiber-reinforced composite materials is suggested by extending the unmixing-mixing scheme which is based upon composite micromechanics. The strain components of thermal expansion due to a temperature change, gas pressure in pores, and chemical shrinkage are included in the constitutive model. On purpose to verify the derived constitutive relations, the representative volume element of two-dimensional lamina subject to various loading conditions is analyzed by the finite element method. The overall stress and strain responses are obtained, and compared with the predicted values by the unmixing-mixing scheme. The numerical results show the usefulness of the proposed model to predict the thermoelastic behavior of porous composites.