• 제목/요약/키워드: Porous Metal

검색결과 471건 처리시간 0.024초

Field Emission properties of Porous Polycrystalline silicon Nano-Structure (다결정 다공질 실리콘 나노구조의 전계 방출 특성)

  • Lee, Joo-Won;Kim, Hoon;Park, Jong-Won;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.69-72
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^{2}$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Electrochemical Characteristics of Porous Modified Silicon Impregnated with Metal as Anode Materials for Lithium Secondary Batteries (리튬 이차전지용 금속이 담지된 다공성 실리콘 음극물질의 전기화학적 특성)

  • Jang, Eun-Jung;Jeon, Bup-Ju
    • Journal of Hydrogen and New Energy
    • /
    • 제23권4호
    • /
    • pp.353-363
    • /
    • 2012
  • The relationship between the diffusivity and electrochemical characteristics of lithium secondary battery with the modified Si anode material prepared in HF/$AgNO_3$ solution was investigated. The crystallographic structure and images of the modified porous Si and modified Si/Cu was examined using the X-ray diffraction, BET and SEM. To examine the effect of metal composite and pore size distribution according to chemical etching on the electrochemical characterization, the electrodes for half cells were prepared with the modified Si, modified Si/Cu, and modified Si/Cu annealed with $600^{\circ}C$. Our results showed that the chemical diffusivity of lithium ions was related to structure and resistance of Si/Cu composite anode material. The lithium diffusivity in modified silicon compound calculated from the CV was at the range of $1{\times}10^{-12}$ to $9{\times}10^{-16}cm^2/s$. The effects of modified silicon structure and resistance on the cycling efficiency were significant.

Fabrication of Nano Porous Silicon Particle with SiO2 Core Shell for Lithium Battery Anode (리튬 배터리 음극용 SiO2 코어 쉘을 갖춘 나노 다공성 실리콘 입자 제조)

  • Borim Shim;Eunha Kim;Hyeonmin Yim;Won Jin Kim;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • 제34권7호
    • /
    • pp.370-376
    • /
    • 2024
  • In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.

Nanoscale Metal Powders Production and Applications

  • Gunther, Bernd-H
    • Journal of Powder Materials
    • /
    • 제9권6호
    • /
    • pp.409-415
    • /
    • 2002
  • In this review the methods for production and processing of isolated or agglomerated nanoscale metal particles embedded in organic liquids (nanosuspensions) and polymer matrix composites are elucidated. Emphasis is laid on the techniques of inert gas condensation (IGC) and high pressure sputtering for obtaining highly porous metal powders ("nanopowder") as well as on vacuum evaporation on running liquids for obtaining nanosuspensions. Functional properties and post-processing are outlined in view of applications in the fields of electrically conductive adhesives and anti-microbially active materials for medical articles and consumer goods.mer goods.

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

A Study on the Performance of the Diesel Particulate Filter made of Porous Metal with Fe-based Fuel Additive (Fe 첨가제를 적용한 금속분말 필터의 포집 및 재생 특성에 관한 연구)

  • Park, S.H.;Chun, K.M.;Cho, G.B.;Jeong, Y.I.;Park, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.802-806
    • /
    • 2001
  • Diesel particulate trap is the most reliable system to reduce the particulate matters from diesel engine. Filter is the core component of DPF and ceramic monolith type is dominantly used, which is expensive and fragile relatively at thermal shock. Porous metal filter, which has superior thermal characteristics and low cost, was tested in order to analyze the regeneration performance by using with ferrocene additive. This filter showed the 72% filtration efficiency, additives itself diminished 48% of PM from engine out emission, and final PM reduction ratio of 89% was achieved by DPF system with D-13 test mode.

  • PDF

Fabrication of Porous Yttria-Stabilized Zirconias Controlled by Additives

  • Paek, Yeong-Kyeun;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of the Korean Ceramic Society
    • /
    • 제44권2호
    • /
    • pp.79-83
    • /
    • 2007
  • To fabricate a thick, porous yttria-stabilized zirconia without cracking and warping, a method for the simultaneous control of the porosity and shrinkage was designed. As a pore former, a potato starch was used. For the control of shrinkage the oxidation of Al metal particles was used. For the sintering of the above powder mixtures, a partial sintering technique was used at $1300^{\circ}C$ for 10 min in air. Upon adding the additives, high open porosity above 53% and a low shrinkage level were obtained. As a result cracking and warping of the sintered body were deterred. This outcome most likely resulted from the compensation of sintering shrinkage due to the volume expansion caused by oxidation of the Al metal particles during heat-treatment.

다공질 실리콘을 이용한 전계 방출 소자

  • 주병권
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.92-97
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900 ^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^2$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Investigation of Influence of Pulse-periodical Laser Radiation Power on Stability of Liquid-metal Contacts between Powder Particles during Selective Laser Sintering

  • Beljavin, K.E.;Minko, D.V.;Bykov, R.P.;Kuznechik, O.O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.518-519
    • /
    • 2006
  • A connection between pulse-periodical laser radiation power and stability of liquid-metal contacts between powder particles during selective laser sintering (SLS) is determined based on analysis solving the problem of stability of liquid column in the gravity and capillary forces field. On the grounds of obtained relationships the optimization of pulse-periodical laser radiation power and SLS-process duration is realized, that allows to produce voluminous powder porous materials with pre-determined physical and mechanical properties and surface geometry. Results of metallographic investigations of powder porous materials of titanium powder produced with technological regimes calculated by means of obtained relationships are given in the work

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • 제37권5호
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.