• 제목/요약/키워드: Porous Membrane

검색결과 512건 처리시간 0.029초

세포함유용 지지체로서 다공성 젤라틴계 막 (Porous gelatin-based membrane as supports for impregnation of cells)

  • 이영무;홍성란
    • 멤브레인
    • /
    • 제11권1호
    • /
    • pp.29-37
    • /
    • 2001
  • 본 논문은 인공 진피와 조직공학용 scaffold로 이용하기 위해 다공성 membrane로서 gelatin-based sponge의 효율성을 연구하였다. 불용성의 다공성 membrane은 1-ethyl-(3-3dimethylaminopropyl)carbodiimide(EDC)로 가교하여 제조하였다. Fourier-transformed infrared (FT-IR) spectroscopy, scanning electron microscopy(SEM) 그리고 Instron analysis로 다공성 membrane의 특성을 조사하였다. 다공성 membrane은 용적당 큰 표면적을 제공하는 micro porous한 구조를 가지고 있다. Gelatin/hyaluronic acid (HA) membrane의 공경크기는 40~200$\mu\textrm{m}$이다. HA의 첨가는 다공성 membrane의 기계적 강도와 세포부착능력에 영향을 미쳤다. Gelatin/HA 다공성 membrane의 압축강도는 collagen과 비슷하며, 세포배양과 인공진피 transplantation에 있어서의 충분한 기계적 강도를 가지고 있다. Fibroblasts를 함유한 진피기질을 제조하기 위해 직경 8mm의 다공성 membran에 4$\times$10(sup)5cells/membrane의 세포밀도로 fibroblast를 배양하였다. GH91 porous membrane에서의 fibroblast 부착성은 GH55 porous membrane에서보다 우수하였다. 삼차원 구조의 gelatin/HA membrane matrix에서의 fibroblast의 배양은 생체내 조건과 유사한 생리적 환경을 제공하였다.

  • PDF

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.7-14
    • /
    • 2003
  • The interaction of monochromatic incident waves with a submerged horizontal porous membrane is investigated in the context of two-dimensional linear hydro-elastic theory. It is assumed that the membrane is made of material with very fine pores so that the normal velocity of the fluid passing through the porous membrane is linearly proportional to the pressure difference between two sides of the membrane (e.g. Darcy's law). Using the Eigen-function expansion method, the wave-blocking performance of a submerged horizontal porous membrane is tested with various membrane tensions, porosities, lengths, and submerged depths. It is found that an optimal combination of design parameters exists for given water depth and wave characteristics.

  • PDF

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

공유결합으로 다공성 막에 고정화된 효소에 의한 이산화탄소 포집 (Carbon Dioxide Sequestration of Enzyme Covalently Immobilized on Porous Membrane)

  • 박진원
    • KSBB Journal
    • /
    • 제28권4호
    • /
    • pp.225-229
    • /
    • 2013
  • Bovine Carbonic anhydrase (BCA) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of carbon-dioxide saturated solution with buffer were monitored with respect to time to calculate the catalytic activities of hydration of carbon-dioxide for free and immobilized CA. The catalytic rate constant values for free CA, immobilized CA on polystyrene nanoparticles, and immobilized CA on a porous cellulose acetate membrane were 0.79, 0.67, and 0.56 $s^{-1}$, respectively. Reusability was studied up to 10 cycles of $CO_2$ sequestration. The activity for the CA immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the CA on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the CA immobilized the membrane had the least loss rate of the activity compared to the others. From this study, the porous membrane was feasible as a carrier for the CA immobilization in hydration and sequestration of carbon-dioxide.

지지막을 이용한 액막 추출기에 의한 합성해수 중의 $Sr^{2+}$ 이온 분리 (Separation of $Sr^{2+}$ Ion from Seawater by Liquid Membrane Permeator with Two Micro-Porous Films)

  • 주창식;이회근;정갑섭
    • 한국환경과학회지
    • /
    • 제9권6호
    • /
    • pp.517-522
    • /
    • 2000
  • Separation of strontium ion from synthetic seawater in the contained liquid membrane permeator with two micro-porous films was performed. The permeator consisted of a liquid membrane and two cells for aqueous solutions. The liquid membrane consisted of $D_2EHPA(di-2-ethylhexy1-phosphoric acid)$ and DCH18C6 (dicyclohexano-18-crown-6),diluted to 30 vol% with kerosine and was trapped between two micro-porous hydrophilic films. This liquid membrane separated two aqueous solutions, one of which was synthetic seawater and the other of which was the stripping solutions consisting of 1mol/L $H_2SO_4$ solution. The effects of various operating parameters on the extraction rate and equilibrium extraction ratio of strontium ion from synthetic seawater were experimentally examined. The addition of DCH18C6 to the $D_2EHPA$ solution caused synergy effect on the extraction of strontium ion. The permeator extracted strontium ion from synthetic seawater effectively with high membrane life time.

  • PDF

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

고분자 미세입자의 전기분사와 다공성 박막 제작에의 응용 (Electrospraying of Polymeric Microparticles and its Application to Fabrication of Porous Membrane)

  • 정영훈;오하나
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.126-133
    • /
    • 2015
  • Recently, there has been demand for polymeric porous membranes in various fields, such as environmental engineering, pharmaceutics, tissue engineering, drug delivery, biology, and fuel cells. In this study, it is proposed that a polymer particle-based porous membrane can be fabricated using electrospraying and sintering processes. Electrospraying can fabricate polymeric particles with diameters ranging from several micrometers to tens of nanometers without the cumbersome particle aggregation problem. Additionally, the particles can be sintered through thermo-compression under the glass transition temperature. In this study, a polymethyl methacrylate particle-based porous membrane with an average pore size of less than 500 nm is fabricated using the proposed method.

막물질 이동의 이론적 고찰 (Theoretical Overview of Membrane Transport)

  • Park, Young
    • 멤브레인
    • /
    • 제3권3호
    • /
    • pp.94-107
    • /
    • 1993
  • Many researchers have discussed how membrane performance can be enhanced through an understanding of polymer science and engineering. The understandings of transport in porous membrane are used to achieve the isolation of certain components from mixtures. Particular emphasis is placed on the applicability of membrane separations for the isolation of macromolecules[1]. An awareness of membrane structure characteristics is required for the rational design of membranes for specific and/or new applications. This understanding rests on the knowledge of fields such as polymer thermodynamics[2], polymer adsorption [3, 4], diffusion in polymers[5, 6], reaction mechanism[7], and the dynamic behavior[8, 9] of polymer in porous membrane.

  • PDF