• 제목/요약/키워드: Porous Layer

검색결과 754건 처리시간 0.028초

SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석 (Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film)

  • 한덕영;박재현;이윤주;이정현;김수룡;김영희
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.

습식법을 이용한 고체산화물 연료전지용 세라믹 연결재 제조 특성연구 (A study on the fabrication technology of ceramic interconnect for the SOFC by wet process)

  • 이길용;김종희;송락현;백동현;정두환;신동열
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.200-200
    • /
    • 2003
  • 고체산화물 연료전지(SOFC)에서 사용되는 연결재의 주 기능은 각 단위 셀의 연료극과 다음 셀의 공기극을 전기적으로 연결하여, 공기와 사용연료의 분리역할을 하기 위하여 사용된다. SOFC용 연결재는 다른 구성요소 소재보다, 높은 전자 전도성, 낮은 이온전도성, 우수한 기계 적강도가 요구되며, SOFC는 고온에서 작동되기 때문에, 상온에서 작동온도까지 다른 요소 소재들과 유사한 열팽창계수와 물리, 화학적으로 안정성이 요구된다. 현재 연결재 제조기술은 EVD, CVD, plasma spraying, tape casting 등 다양하게 연구되고 있으며, 본 연구는 세라믹 연결재 증착방법 중 저렴한 비용으로 대량 생산이 용이한 습식법(dip coaling)을 적용하여, 연료극 지지체식 flat-tube형 고체산화물 연료전지의 지지체를 위해 세라믹 연결재를 제조하고, 그 특성을 연구하였다. 세라믹 연결재로써 선정한 합성조성은 LaCr $O_3$에 Ca이 치환 고용된 L $a_{0.6}$C $a_{0.41}$Cr $O_3$으로 pechini법으로 합성하였다. 합성된 조성은 100$0^{\circ}C$에서 5시간 하소후 가속 Ball Milling하여 0.5$\mu\textrm{m}$의 평균입자크기를 얻을 수 있었다. XRD 상분석결과 perovskite상 (L $a_{1-x}$ Ca/x/Cr $O_3$)과 CaCr $O_4$를 얻을 수 있었다. slurry를 제조하여 막의 밀착성을 증진시키기 위해 sand blasting시킨 flat tube지지체에 진공펌프를 이용하여 소재내부와 외부의 압력차로 dip coating한 후, 140$0^{\circ}C$로 소결 하였다. coating 결과 박리현상은 없었으나, 표면과 단면의 SEM분석결과 다소 porous한 박막층이 형성되었으며, Ca이온이 지지체로 permeation되는 현상이 발생하였다. 이와 같은 결과로부터 보다 치밀한 박막생성을 위해, slurry 제조조건을 변화시켰으며, Ca이온의 migration을 막기 위해 barrier layer를 이용하였다 완전 소결된 지지체는 가스투과도와 전기전도도측정을 통하여 특성을 평가하였다.였다.다.

  • PDF

2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성 (Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer)

  • 유창민;이창현;신효순;여동훈;김성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

천연 고분자-칼슘 포스페이트 복합 박막 제조 (Preparation of Natural Polymer-CaP Composite Films)

  • 김가은;모만진;이우걸
    • 공업화학
    • /
    • 제16권1호
    • /
    • pp.112-116
    • /
    • 2005
  • 본 연구에서는 생체재료 표면개질의 방법으로 유-무기 박막 형성에 관한 방법을 연구하였다. Collagen의 분해 시 얻어진 gelatin을 polystyrene 배양접시에 2 h 동안 흡착시켜 gelatin 흡착층을 형성하였다. Gelatin 흡착중에 calcium과 phosphorus 과포화 이온용액을 주입하여 calcium phosphate (CaP) 박막을 제조하였다. 박막 형성 초기에 박막의 핵들이 나타나는 것을 관찰하였다. 처리시간에 따라 CaP 박막에 성장하여 배양접시의 바닥표면 전체에 형성된 것을 볼 수 있었다. 형성된 gelatin/CaP 복합 박막의 특징은 3차원 공간에서 다공성이 높은 표면 구조를 형성하였다. Attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR)을 이용하여 CaP 박막의 화학적 성질을 분석한 결과, 박막 형성 초기에는 무결정 형태의 박막이 형성되고, 시간이 경과됨에 따라 결정성이 약간 증가하지만, 결정성이 낮은 CaP에서 나타나는 흡수피크의 존재 등을 통하여 본 연구에서 제조한 CaP 박막은 poorly crystalline CaP 박막임을 확인하였다.

인공고관절 전치환술에 있어서 비구 재건 술에 관한 3차원 유한요소해석 (3-D Finite Element Analysis of Acetabular Reconstruction of THR)

  • 류제청;문무성;김규석;유명철
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.34-38
    • /
    • 1995
  • Using a 3-D finite element method (FEM), the biomechanical characteristics of a threaded truncated acetabular component and a porous coated hemispherical acetabular component were studied. The Von-Mises stress/strain patterns in the acetabulum reconstructed with these two different types of cementless acetabular cups were investigated. The geometry and dimensions of human hemi-pelvis used in the present shape modeling for finite element analysis were scanned with a 3-D laser scanner(TDS-9000, Cyberware, USA). The scanned data was numerically handled with a shape modelling software 'Pro-Engineer'. Using 19836, 16853 tetrahedral elements, respectively, the stress and displacement field of the acetabulum reconstructed with the two different types of the acetabular components were computed. While the hemi-sphere component was found to show a relatively similar stress/strain patterns to those in the normal hip, the results with the threaded cup showed a considerably different patterns from those in the normal condition. Several regions in cancellous bone near the threads and the edge of the truncated cup was found to be overstressed, especially in the superior-lateral part of the acetabulum. It was postulated that the excessive reaming-out of subchondral bone layer when the truncated cup was used can cause the presence of these overstressed regions of cancellous bone. This theoretical prediction for the implanted acetabulum appeared to consistent with the pathological observation of proximal/medial migration of the threaded truncated acetabular prostheses in the previous publications.

  • PDF

피롤/퓨란 고분자 복합체 전극의 전기화학적 성질 (Electrochemical Properties of Polypyrrole/Polyfuran Polymer Composite Electrode)

  • 차성극
    • 대한화학회지
    • /
    • 제42권6호
    • /
    • pp.664-671
    • /
    • 1998
  • 유기 전도성 고분자들중 전도성이 뛰어나고 전기화학적으로 중합이 용이하며 안정성이 뛰어난 피로고분자(ppy)는 산화-환원 활성자리에 회합되는 이온종에 따라서 피막의 형태학적 구조가 다양하다. 그러나 공기중에서 쉽게 노화하며 잘 부서지고 물과 친하지 않은 단점이 있다. 이를 개선하기 위하여 이 다공성 ppy 피막에 높은 개시전위를 갖는 퓨란고분자(pfu)를 끼워심기 중합한 Pt/ppy/pfu(x)전극을 제작하여 그 전기화학적 성질들을 순환전압전류법과 전기호학적 임피던스법으로 조사하였다. 이 때 사용된 도판트 이온은 $PF_6^-,\; BF_4^-$, 그리고 $ClO_4^-$이온 이였으며, pfu의 조성은 ppy에 대하여 0∼1.10 범위였는데 그 조성이 0.1∼0.2의 범위에 있을 때 가장 좋은 산화환원 특징을 나타냈다. 또, $PF_6^-$ 이온이 도우핑되었을 때 전하전달 저항은 다른 이온들로 중합된 것에 비하여 40배정도 낮았으며, 이 중층의 용량은 다른 두 종에 비하여 20배정도 큰 값을 보였다. 전하전달은 주파수의 변화에 영향을 받으며 물질전달에 의한 Warburg 임피던스 항이 포함되는 등가회로를 갖는다.

  • PDF

Inlay법을 이용한 안와 내벽 골절의 교정 (Inlay Grafting for the Treatment of the Posterior Comminuted Fracture of Medial Orbital Wall)

  • 임종효;김태곤;이준호;김용하
    • 대한두개안면성형외과학회지
    • /
    • 제10권1호
    • /
    • pp.55-60
    • /
    • 2009
  • Purpose: For blowout fracture of the medial orbital wall, the goals of treatment are complete reduction of the herniated soft tissue and anatomic reconstruction of the wall without surgical complications. Surgeons frequently worry about damage to the optic nerve from the dissection, when the part over the posterior ethmoidal foramen was fractured. The authors performed small incision and inlay grafting for reconstruction of medial orbital wall fracture. Methods: Between January 2007 and April 2008, 15 out of 32 patients were included in an analysing the outcome of corrected medial orbital wall fracture. In 15 patients of posterior comminuted fracture of medial orbital wall, insertion of porous polyethylene($Medpor^{(R)}$ channel implant, Porex, USA) to ethmoidal sinus was performed in multiple layer, through the transconjunctival approach (inlay grafting). Results: In all cases, the orbital bone volume was reconstructed in its normal anatomical position. The associated ocular problems disappeared except for mild enophthalmos in 2 patients and there were no surgical complications associated with inlay grafting. Conclusion: The advantage of inlay grafting include anatomical reconstruction of the orbital wall; the avoidance of optic nerve injury; the simplicity of the procedure; and consequently, the absence of surgery-related complications. This technique is presented as one of the preferred treatments for posterior comminuted fracture of medial orbital wall.

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성 (Surface Characteristics of Anodized and Hydrothermally-Treated Ti-6Al-7Nb Alloy)

  • 김문영;송광엽;배태성
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.33-42
    • /
    • 2005
  • This study was performed to investigate the surface properties and in vitro biocompatibility of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed using a regulated DC power supply. The applied voltages were given at 240, 280, 320, and 360 V and current density of $30mA/cm^2$. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. Samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ during 30 days. The results obtained were summarized as follows; 1. The oxide films were porous with pore size of $1{\sim}5{\mu}m$. The size of micropores increased with increasing the spark forming voltage. 2. The main crystal structure of the anodic oxide film was anatase type as analyzed with thin-film X-ray diffractometery. 3. Needle-like hydroxyapatite (HA) crystals were observed on anodic oxide films after hydrothermal treatment at $300^{\circ}C$ for 2 hours. The precipitation of HA crystals was accelerated with increasing the spark forming voltage. 4. The precipitation of the fine asperity-like HA crystals were observed after being immersed in Hanks' solution at $37^{\circ}C$. The precipitation of HA crystals was accelerated with increasing the spark forming voltage and the time of immersion in Hanks' solution. 5. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal as increasing the spark forming voltage and the time of immersion in Hanks' solution.

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.