• 제목/요약/키워드: Porous Layer

검색결과 754건 처리시간 0.026초

DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성 (Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures)

  • 최태은;양진석;엄성용;진성훈;조보민;조성동;손홍래
    • 통합자연과학논문집
    • /
    • 제3권2호
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

다공성 확산층을 이용한 한계전류형 지르코니아 산소센서 (Limit-current type zirconia oxygen sensor with porous diffusion layer)

  • 오영제;이칠형
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Distributed Bragg Reflector, Microcavity 구조를 갖는 다공질규소의 반사율 스펙트럼 (Reflectance spectrum properties of DBR and microcavity porous silicon)

  • 김영유;김한중
    • 한국결정성장학회지
    • /
    • 제19권6호
    • /
    • pp.293-297
    • /
    • 2009
  • 본 연구에서는 p형 단결정 규소 기판을 에칭시켜 다층구조를 갖는 DBR 및 Microcavity 다공질규소를 제작하고, 그 반사율 스펙트럼을 조사하였다. 그 결과 다층구조를 갖는 다공질규소의 반사율 스펙트럼에서 프린지 패턴의 수는 단일층 다공질규소의 경우보다 상대적으로 많았으며, 특정 파장에서 반사율은 90 % 이상으로 나타났다. 그리고 DBR 다공질규소에서 최대 반사율 봉우리의 FWHM 값은 33 nm로 매우 좁게 나타났다.

초박형 태양전지 제작에 Porous Silicon Layer Transfer기술 적용을 위한 전기화학적 실리콘 에칭 조건 최적화에 관한 연구 (Optimization of Electrochemical Etching Parameters in Porous Silicon Layer Transfer Process for Thin Film Solar Cell)

  • 이주영;구연수;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권1호
    • /
    • pp.23-27
    • /
    • 2011
  • 전기화학적 에칭을 이용한 다공성 실리콘 이중층 형성은 초박형 태양전지 제작에서 PS layer transfer 기술을 적용하기 위한 선행 공정이다. 다공성 실리콘 층의 다공도는 전류밀도와 에칭용액 내 불산의 농도를 조절하여 제어할 수 있다. 전기화학적 에칭을 이용한 다공성 실리콘 형성을 위하여 비저항 $0.01-0.02\;{\Omega}{\cdot}cm$의 p-type (100)의 실리콘 웨이퍼를 사용하였으며, 에칭용액의 조성은 HF (40%) : $C_2H_5OH$(99 %) : $H_2O$ = 1 : 1 : 2 (volume)으로 고정하였다. PS layer transfer 기술에 사용되는 다공성 실리콘 이중층을 형성하기 위해서 에칭 도중 전류밀도를 낮은 전류밀도 조건에서 높은 전류밀도 조건으로 변환하여 low porosity layer 하부에 high porosity layer를 형성할 수 있다.

다공질 실리콘층을 이용한 정전용량형 습도센서의 개발 (Development of Capacitance-type Humidity Sensors Using Porous Silicon Layer)

  • 김성진;이주혁;윤여경;최복길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1014-1016
    • /
    • 1998
  • A capacitance-type humidity sensor using porous silicon layer is developed. The unique property of this sensor is a structure which has electrodes on the surface of the wafer like a general IC device. To do this. the sensor was fabricated using process such as localized formation of porous silicon, oxidation of porous silicon layer, and etching of oxidized porous silicon layer. The measurement of humidity-sensing ability was done for two type of sensors using porous silicon layer formed in 25 and 35% HF solutions, respectively. As the result, the former sensors showed larger value and variation of capacitance for the relative humidity.

  • PDF

메사구조를 갖는 다공질 실리콘 습도 센서 (Humidity sensors using porous silicon layer with mesa structure)

  • 전병현;양규열;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2000
  • A capacitance-type humidity sensors in which porous silicon layer is used as humidity-sensing material was developed. This sensors was fabricated monolithically to be compatible with the typical IC process technology except for the formation of porous silicon layer. As the sensors is made as a mesa structure, the correct measurement of capacitance is expected because it can remove the effect of the parasitic capacitance from the bottom layer and another junctions. To do this, the sensor was fabricated using process steps such as localized formation of porous silicon, oxidation of porous silicon layer and etching of oxidized porous silicon layer. From completed sensors, capacitance response was measured on the relative humidity of 25 to 95% at room temperature. As the result the measured capacitance showed the increase over 300% at the low frequency of 120Hz, and showed little dependence on the temperature between 10 to $40^{\circ}C$.

  • PDF

Nano-porous $Al_2O_3$ used as a protecting layer of AC Plasma Display Panel

  • Park, Sung-Yun;Hong, Sang-Min;Shin, Bhum-Jae;Cho, Jin-Hoon;Kim, Seong-Su;Park, Sung-Jin;Lee, Kyu-Wang;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.359-361
    • /
    • 2003
  • Nano-porous alumina was investigated as a protecting layer in an AC Plasma Display Panel. A 2 ${\mu}m$ thick nano-porous $Al_2O_3$ layer inserted with MgO was formed on the dielectric layer instead of the conventional 500 nm-thick MgO thin film. Both nano-porous $Al_2O_3$layer and inserted MgO were prepared by wet process. The luminance and luminous efficiency of 3-inch test panel adopting nano-porous $Al_2O_3$ was higher than that of the conventional PDP.

  • PDF

다공성실리콘의 탄화를 이용한 PL의 열적안정성 증진 (Enhancement of Thermal Stability in Photoluminescence by Carbonization of Porous silicon)

  • 최두진;서영제;전희준;박홍이;이덕희
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.467-472
    • /
    • 1997
  • Porous silicon was prepared by an anodic etching. The pore size was about 10 nm at an etching time of 20 sec and a current density of 20 mA/$\textrm{cm}^2$. The porous layer was composed of an micro-porous layer (0.6 ${\mu}{\textrm}{m}$) and a macro-porous layer (10 ${\mu}{\textrm}{m}$). Room temperature PL with maximum peak 6700$\AA$ appeared. The peak disappeared by an oxidation reaction when the porous silicon was heated to 100~20$0^{\circ}C$ in atmosphere. In order to avoid the oxidation a heat treatment was done in H2 atmosphere. The micro-pore and Si column, which formed quantum well, were collapsed by the high temperature. The PL maximum peak of heated sample was gradually red-shifted and showed about 300$\AA$ red-shift at 50$0^{\circ}C$. The intensity of PL was maintained to high temperatures in lower pressures. The porous Si was carbonized in C2H2+H2 gas in order to increase thermal stability. The carbonization of the porous Si prevented red-shift of the maximum PL peak caused by sintering effect at high temperatures, and the carbonized porous Si showed Pl signal at higher temperatures by above 20$0^{\circ}C$ than the sample in H2 atmosphere.

  • PDF

Solid volume fraction이 20% 인 다공성 실린더 주위의 유동 해석 (NUMERICAL SIMULATION OF FLOW PAST A POROUS CYLINDER WITH 20% SOLID VOLUME FRACTION)

  • 장경식
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.87-92
    • /
    • 2012
  • The presence of a layer of vegetation which is relevant in river engineering or coastal engineering can modify the overall flow resistance, turbulent characteristics of flow. The patch of vegetation can be modelled and studied in a simple porous cylinder by previous researchers. Fully three dimensional Large Eddy Simulation is conducted in flow past a porous cylinder with a solid volume fraction (SVF) 0f 20%. The porous cylinder of diameter D contains 89 smaller cylinders which diameter is 0.048D in a regular staggered way. Reynolds number based on porous cylinder diameter D and the bulk velocity is 10,000. The large scale shedding is qualitatively similar to the one observed in the non-porous case (SVF=100%). The difference in the dynamics of the separated shear layer and the streamwise flow penetrating through the porous cylinder are compared with those in the non-porous cylinder. In particular, the wake billows form a larger distance from the back of the porous cylinder.