• 제목/요약/키워드: Porous Composite

검색결과 509건 처리시간 0.025초

SPS로 제조된 HA/β-TCP 복합재의 기공의 크기와 분포에 미치는 지지체 량의 영향 (Effect of Space Holder Content on Pore Size and Distribution in HA/β-TCP Composites Consolidated by SPS)

  • 이택;우기도;강동수;이해철;장준호
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.165-170
    • /
    • 2015
  • Ceramics biomaterials are useful as implant materials in orthopedic surgery. In this study, porous HA(hydroxyapatite)/${\beta}$-TCP(tricalcium phosphate) composite biomaterials were successfully fabricated using HA/${\beta}$-TCP powders with 10-30 wt% $NH_4HCO_3$ as a space holder(SH) and $TiH_2$ as a foaming agent, and MgO powder as a binder. The HA/${\beta}$-TCP powders were consolidated by spark plasma sintering(SPS) process at $1000^{\circ}C$ under 20 MPa conditions. The effect of SH content on the pore size and distribution of the HA/${\beta}$-TCP composite was observed by scanning electron microscopy(SEM) and a microfocus X-ray computer tomography system(SMX-225CT). These microstructure observations revealed that the volume fraction of the pores increased with increasing SH content. The pore size of the HA/${\beta}$-TCP composites is about $400-500{\mu}m$. The relative density of the porous HA/${\beta}$-TCP composite increased with decreasing SH content. The porous HA/${\beta}$-TCP composite fabricated with 30%SH exhibited an elastic modulus similar to that of cortical bone; however, the compression strength of this composite is higher than that of cortical bone.

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

비고정화 된 일차원 광결정의 DBR 다공성 실리콘을 이용한 센서와 Drug Delivery로의 응용 (1-D photonic crystals of free-standing DBR PSi for sensing and drug delivery applications)

  • 고영대;김지훈;박종선;김성기;김동수;조성동;손홍래
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.391-396
    • /
    • 2006
  • Free-standing multilayer distributed Bragg reflectors (DBR) porous silicon dielectric mirrors, prepared by electrochemical etching of crystalline silicon using square wave currents are treated with polystyrene to produce flexible, stable composite materials in which the porous silicon matrix is covered with caffeine-impregnated polystyrene. Optically encoded DBR PSi/polystyrene composite films retain the optical reflectivity. Optical characteristics of DBR PSi/polystyrene composite films are stable and robust for 2 hrs in a pH=7 aqueous buffer solution. The appearance of caffeine and change of DBR peak were simultaneously measured by UV-vis spectrometer and Ocean optics 2000 spectrometer, respectively.

용탕 침투법을 이용한 복합 삽입 금속의 제조 (Fabrication of Composite Filler Metal by Melt Infiltration)

  • 박흥일;김지태;김우열
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.

다공질 Ni 및 Ni-Cr으로 강화한 AC4C 복합재료의 제조 및 특성연구 (A Study for Characteristic and Manufacturing of Porous Ni/AC4C and Ni-Cr/AC4C Composites)

  • 김용현;김억수;여인동;이광학
    • 한국주조공학회지
    • /
    • 제20권1호
    • /
    • pp.21-28
    • /
    • 2000
  • Ni and Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7%wtSi-0.3 wt%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25 MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition showed that solutionizing temperature of above 520^{\circ}C$, the interfacial reaction zone increased proportionally with increasing heat treatment tim and reaction products formed by interfacial reaction are mainly composed of $Al_3Ni$ and $Al_3Ni_2$ phases. The tensile strength of Ni/AC4C and Ni-Cr/AC4C composite is lower than the matrix metal and this can be explained by the brittle intermetallic compounds formed at the interface of Ni and Ni-Cr reinforcements. But the properies of hardness, wear resistance and thermal expansion are better than the matrix due to the strengthening effect of Ni-Cr porous metals.

  • PDF

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Development of Porous Metal Materials and Applications

  • Fang, Y.;Wang, H.;Zhou, Y.;Kuang, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.599-600
    • /
    • 2006
  • This paper described the state of art of porous metal materials, the typical manufacturing technologies and performances of sintered metal porous materials, with emphasis on the recent research achievements of CISRI in development of porous metal materials. High performance porous metal materials, such as metallic membrane, sub-micron asymmetric composite porous metal, large dimensional and structure complicated porous metal aeration cones and tube, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed. Their applications in energy industry, petrochemical industry, clean coal process and other industrial fields were introduced and discussed.

  • PDF

일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체 (Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength)

  • 김규헌;김태림;김동현;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향 (Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite)

  • 이상진;권명도;이충효;조경식
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

고온용 SiCf/SiC 복합재료개발 기술과 활용방향 (Application and Technology on Development of High Temperature Structure SiCf/SiC Composite Materials)

  • 윤한기;이영주;박이현
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.1016-1021
    • /
    • 2008
  • The development of the first wall whose major function is to withstand high neutron and heat fluxes is a critical path to fusion power. The materials database and the fabrication technology are being developed for design, construction and safety operation of the fusion reactor. The first wall was designed to consist of the plasma facing armor, the heat sink layer and the supporting plates. and Porous materials are of significant interest due to their wide applications in catalysis, separation, lightweight structural materials. In this study, the characteristics of the sintering process of SiC ceramic, $SiC_f$/SiC composite and porous $C_f$/SiC composite have been introduced order to study of the fusion blanket materials and heat-exchange pannel.