• Title/Summary/Keyword: Porous Ceramics

Search Result 268, Processing Time 0.019 seconds

Preparation of Porous Ceramics Sound Absorbent Material Using Sewage Sludge Slag (하수슬러지 슬래그를 이용한 다공성 세라믹스 흡음재료 제조)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.273-278
    • /
    • 2003
  • The effects of content and particle size of sewage sludge slag on the sound absorption was investigated and the physical$.$mechanical properties of porous ceramics for sound absorbent material was studied. The physical$.$mechanical properties of specimens have depended on sintering temperature and slag content without particle size effect of slag. As water glass content increase and particle size of slag decrease at the same slag content, physical$.$mechanical properties of them have been improved. The bulk density and compressive strength of specimens with the batch composition of 77∼89 wt% of slag content and particles with 1∼3 mm, and sintered at 1,050$^{\circ}C$ for 2 h were 1.48∼1.71 and 86∼163 kgf/$\textrm{cm}^2$, respectively. The specimens with 1∼3 mm and <1 mm of particles size showed good sound absorption property at low frequency and high frequency region. With increasing thickness of specimens, sound absorption properties at low frequency region were increased.

Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.

3-D Underwater Object Recognition Independent of Translation Using Porous PZT Ultrasonic Sensor (다공질 압전 초음파 센서를 이용한 물체변위에 무관한 3차원 수중 물체인식)

  • Cho, Hyun-Chul;Lee, Kee-Seong;Lee, Su-Ho;Park, Jung-Hak;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1370-1372
    • /
    • 1997
  • In this study, 3-D underwater object recognition using ultrasonic sensor fabricated with porous piezoelectric ceramics and SCL(Simple Competitive Learning) neural networks are presented. The recognition rates for the training data and the testing dara were 96 and 93%, respectively.

  • PDF

Infiltration Processing of Ceramic-Metal Composites: The Role of Wettability, Reaction, and Capillary Flow

  • Asthana Rajiv;Singh Mrityunjay;Sobczak Natalia
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.703-717
    • /
    • 2005
  • The infiltration of ceramics by liquid metals to fabricate ceramic-metal composites is discussed. In particular, the complexity of infiltrating ceramics by liquid metals at high temperatures due to interfacial reactions, metal oxidation, pore modulation and closure, and transient capillary forces has been highlighted. The role of these factors is discussed in the context of reactive infiltration with examples from ceramic/metal composites of practical interest. In addition to flow through porous ceramics, reactive penetration of dense ceramics via chemical dissolution and reaction is also discussed.

Biocompatibility of porous hydroxyapatite ceramics prepared from bovine bones (소 뼈로부터 제조한 다공형 하이드록시아파타이트 세라믹스의 생체친화 특성)

  • Lee, Jong-Kook;Ko, Young-Hwa;Lee, Nan-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.139-146
    • /
    • 2012
  • Natural hydroxyapatite powder was obtained from the calcination of bovine bones and its porous compacts were fabricated by pressureless sintering at 1100 and $1200^{\circ}C$ for 1h. To evaluate and compare their biocompatibility with porosity, we investigated the support of osteoblast cells growth and cytotoxicity using the MG-63 cell line model in vitro. Sintered hydroxyapatite ceramics have a porous microstructure with a relative density of 65 % at $1100^{\circ}C$ and 82 % at $1200^{\circ}C$. Cells adherence to the surface of hydroxyapatite ceramics was observed in a day after the cell culture, and the spreading of cytoplasm around the nucleus was shown after 3 day cell culture. Most of cells were extended to the surface of hydroxyapatite through the wide area. Cell viability was nearly the same till 3 days culturing. But the rate of cell growth is higher in the specimen sintered at $1100^{\circ}C$ than that of $1200^{\circ}C$. It indicates that the porosity is an important factor to enhance the cell viability in the porous hydroxyapatite ceramics derived from bovine bones.

Micro-Porous Ceramics Using directionally $MgAl_2O_4/MgO$ eutectic crystals

  • Lee, Jong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.229-233
    • /
    • 2005
  • Novel process was tried to obtain micro-porous ceramic body containing continuous pore channel. $MgAl_2O_4/MgO$ eutectic fibers and rods have been grown successfully by the micro-pulling-down method, and the microstructures and optical characterizations of grown crystals were performed. $MgAl_2O_4/MgO$ eutectic fibers of $0.3{\sim}1mm$ in diameter and about 500 mm in length, and the rods having 5 mm in diameter with approximately 60 mm in length have been grown with the $6{\sim}120mm/hr$ of growth speed. The eutectic fibers showed homogeneous microstructure in which MgO fiber aligned to the growth direction in the $MgAl_2O_4$ (spinel) matrix. The grown crystals looked semitransparency under naked eyes. Optical and orientational characterizations were performed. The second phase of MgO (periclase) was easily removed by selective etching with hydrochloric acid, and then porous bodies were obtained.

Preparation of Porous Cordierite by Using Water-Vapour Treatment (수증기처리공정에 의한 다공성 코디어라이트의 제조)

  • 문교태;서신석;노재성;조득희;김동표
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.986-992
    • /
    • 1997
  • Cordierite ceramic was prepared by sol-gel method. It was analyzed by Infrared spectroscopy and X-ray diffraction patterns that the ceramic was chemically mixed in molecular level and transformed to $\alpha$-cordierite at 125$0^{\circ}C$. Water vapour treatments for aging and drying process were conducted to get porous cordierite with thermally stable pore structure. It resulted in 220-410 $m^2$/g BET surface area and mesoporous structure with mean pore diameter, 40$\AA$. Compared to naturally dried ceramic, the ceramic showed superior thermal stability of surface area up to $700^{\circ}C$. Surfaces of porous cordierite ceramics were observed by SEM.

  • PDF

The Blue and Red Luminescences from Ambient Air Aged Porous Silicon

  • Chang, S.S;Yoon, S.O;Choi, G.J;Kawakami, Y;Sakai, A
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • This paper reports on photoluminescence (PL), luminescence decay curves, and compositional analysis of porous silicon(PS) which is aged under air ambient by Fourier transform infrared vibrational spectroscopy (FTIR) and by Auger electron spectroscopy (AES). Porous silicos which has been aged under air ambient yields two PL band structures, i.e. blue/violet PL and red PL. The evolution of a blue/violet band is pronounced, especially for thin PS film which is prepared in dilute HF solution. The blue/violet PL band has been observed initially to increrase rapidly with aging, then saturated with further atmospheric aging. The ambient air aged PS exhibits a fast decay time of sub-nanosecond at room temperature and shows appreciably faster decay time than that at 20K. Atmospheric aging of this thin blue/violet luminescing PS yield non-stoichiometric oxide judging from the vibrational spectra of Si-O and AES analysis.

  • PDF

Rapid Tooling of Porous Ceramic Mold Using Slip Casting (슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작)

  • Chung, Sung-Il;Jeong, Du-Su;Im, Yong-Gwan;Jeong, Hae-Do;Cho, Kyu-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

The Effect of the Sintering Additives on the Fabrication and Thermal Conductivity of Porous Sintered RBSN

  • Park, Young-Jo;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.354-357
    • /
    • 2007
  • The nitriding and post-sintering behavior of silicon powder compact containing sintering additives of 2.3 wt% and 7 wt% were investigated in this study. Regardless of the liquid phase content, elongated large grains of a typical morphology evolved in the post-sintered specimens. Phase analysis revealed a complete phase transformation into ${\beta}-Si_3N_4$ in both porous systems. Oxynitride second phases (mellilite) precipitated in the latter, while those were free in the former containing less amount of liquid phase. The post-sintering condition that yielded a favorable microstructure for a filter application was achieved when the specimens were soaked at $1800^{\circ}C$ for 2 h. It was found that the thermal conductivity of porous $Si_3N_4$ ceramics is dominated by the porosity more than this factor is influenced by the addition of $Al_2O_3$.