• 제목/요약/키워드: Porous Air Bearing

검색결과 20건 처리시간 0.024초

다공질 정압공기 베어링을 이용한 직진 테이블에 있어 주위환경이 움직임 정밀.정확도에 미치는 영향 (Influence of the environments on the movement precision of the guide table using externally pressurized porous air bearing)

  • 한응교;허석환;노병옥
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.721-729
    • /
    • 1988
  • 본 연구에서는 직진테이블 시작품을 통해 주위환경에 의한 영향 중 주위온도 에 따른 움직임 정밀 정확도의 변화 및 지지조건이 움직임 정밀.정확도에 미치는 영향 에 대해 실험 연구하였다.

영구자석 이동형 선형 모터를 가진 초소형 공기베어링 스테이지 (A Miniature Air-Bearing Positioning Stage with a Magnet-Moving Linear Motor)

  • 노승국;박종권
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.89-96
    • /
    • 2007
  • In this paper, a new air bearing stage with magnetic preload and a linear motor has been developed for the small precision machine systems. The new air bearing stage is unique in the sense that permanent magnets attached bottom of the iron core of table are used not only for preloading air bearings in vertical direction but also for generating thrust force by current of the coil at base. The characteristics of air bearings using porous pads were analyzed with numerical method, and the magnetic circuit model was derived for linear motor for calculating required preload force and thrust force. A prototype of single axis miniature stage with size of $120(W){\times}120(L){\times}50(H)\;mm^3$ was designed and fabricated and examined its performances, vertical stiffness, load capacity, thrust force and positioning resolution.

음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석 (Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings)

  • 황평;콴폴리냐;이춘무;김은효
    • Tribology and Lubricants
    • /
    • 제22권2호
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.

다공질 공기 베어링을 적용한 반도체 웨이퍼 연마용 스핀들 개발 (Development of Wafer Grinding Spindle with Porous Air Bearings)

  • 이동현;김병옥;전병찬;허균철;김기수
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.28-34
    • /
    • 2023
  • Because of their cleanliness, low friction, and high stiffness, aerostatic bearings are used in numerous applications. Aerostic bearings that use porous materials as means of flow restriction have higher stiffness than other types of bearings and have been successfully applied as guide bearings, which have high motion accuracy requirements. However, the performances of porous bearings exhibit strong nonlinearity and can vary considerably depending on design parameters. Therefore, accurate prediction of the performance characteristics of porous bearings is necessary or their successful application. This study presents a porous bearing design and performance analysis for a spindle used in wafer polishing. The Reynolds and Darcy flow equations are solved to calculate the pressures in the lubrication film and porous busing, respectively. To verify the validity of the proposed analytical model, the calculated pressure distribution in the designed bearing is compared with that derived from previous research. Additional parametric studies are performed to determine the optimal design parameters. Analytical results show that optimal design parameters that obtain the maximum stiffness can be derived. In addition, the results show that cross-coupled stiffness increases with rotating speed. Thus, issues related to stability should be investigated at the design stage.

Development of a Miniature Air-bearing Stage with a Moving-magnet Linear Motor

  • Ro, Seung-Kook;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.19-24
    • /
    • 2008
  • We propose a new miniature air-bearing stage with a moving-magnet slotless linear motor. This stage was developed to achieve the precise positioning required for submicron-level machining and miniaturization by introducing air bearings and a linear motor sufficient for mesoscale precision machine tools. The linear motor contained two permanent magnets and was designed to generate a preload force for the vertical air bearings and a thrust force for the stage movement. The characteristics of the air bearings, which used porous pads, were analyzed with numerical methods, and a magnetic circuit model was derived for the linear motor to calculate the required preload and thrust forces. A prototype of a single-axis miniature stage with dimensions of $120\;(W)\;{\times}\;120\;(L)\;{\times}\;50\;(H)\;mm$ was designed and fabricated, and its performance was examined, including its vertical stiffness, load capacity, thrust force, and positioning resolution.

다공질 공기베어링 테이블의 운동오차 해석 (Motion Error Analysis of an Porous Air Bearing Table)

  • 박천홍;이후상
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.101-112
    • /
    • 2004
  • In order to analyze the motion errors of the aerostatic stage, it is necessary to consider the influence of the moment variation occurredinside the pads. In this paper, a motion error anaysis method utilizing the transfer functions on the reaction force and moment is proposed, and general characteristics of the transfer functions are discussed. Calculated motion errors by the proposed method show good agreement with the ones calculated by Multi Pad Method, which is considered the entire table as an analysis object. Also, by the introduction of the transfer function of motion errors, which represent the relationship between the spatial frequency components of the rail form error and motion errors, motional characteristics of the porous aerostatic stage can be generalized. In detail, the influence of the spatial frequencies is analyzed quantatively, and the patterns of the insensitive frequencies which almost do not affect the linear motion error or angular motion error according to the rail length ratio and the number of the pad are verified. The relationship between the moment variation occurred inside the pads and the motion errors is also verified together.

  • PDF

전달함수를 이용한 다공질 공기베어링 스테이지의 운동오차해석 (Motion Error Analysis of the Porous Air Bearing Stages Using the Transfer Function)

  • 박천홍;이후상
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.185-194
    • /
    • 2004
  • In order to analyze the motion errors of the aerostatic stage, it is necessary to consider the influence of the moment variation occurred inside the pads. In this paper, a motion error analysis method utilizing the transfer functions on the reaction force and moment is proposed, and general characteristics of the transfer functions are discussed. Calculated motion errors by the proposed method show good agreement with the ones calculated by Multi fad Method, which is considered the entire table as an analysis object. Also, by the introduction of the transfer function of motion errors, which represent the relationship between the spatial frequency components of the rail form error and motion errors, motional characteristics of the porous aerostatic stage can be generalized. In detail, the influence of the spatial frequencies is analyzed qualitatively, and the patterns of the insensitive frequencies which almost do not affect the linear motion error or angular motion error according to the rail length ratio and the number of the pad are verified. The relationship between the moment variation occurred inside the pads and the motion errors is also verified together.