• Title/Summary/Keyword: Porous 3C-SiC

Search Result 151, Processing Time 0.033 seconds

Effect of pre-treatment in 0.5 M oxalic acid containing various NH4F concentrations on PEO Film Formation of AZ91 Mg Alloy (NH4F가 첨가된 0.5 M 옥살산 전처리가 AZ91 마그네슘 합금의 PEO 피막 형성에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated the effect of pre-treatment on the PEO film formation of AZ91 Mg alloy. The pre-treatment was conducted for 10 min at room temperature in 0.5 M oxalic acid (C2H2O4) solution containing various ammonium fluoride (NH4F) concentrations. The pre-treated AZ91 Mg specimens were anodized at 100 mA/cm2 of 300 Hz AC for 2 min in 0.1 M NaOH + 0.4 M Na2SiO3 solution. When AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with NH4F concentration less than 0.3 M, continuous dissolution of the AZ91 Mg alloy occurred together with the formation of black smuts and arc initiation time for PEO film formation was very late. It was noticed that corrosion rate of the AZ91 Mg alloy became faster if small amount of NH4F concentration, 0.1 M, is added. The fast corrosion is attributable to fast formation of porous fluoride together with porous oxides in the reaction products. On the other hand, when AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with sufficient NH4F more than 0.3 M, a thin and dense protective film was formed on the AZ91 Mg alloy surface which resulted in faster initiation of arcs and formation of PEO film.

Development of Ceramic Media for Yeast Immobilization (효모 고정화용 세라믹 담체의 개발)

  • 이율락;박상재
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.285-292
    • /
    • 2000
  • Support media for yeast immobilization was prepared from a porous volcanic rock used as a moisturizer in orchid growing. The rock was broken to the size of 2-3 mm and burned at $600^{\circ}C$ in a furnace in order to remove organic materials blocking the pores or treated with HCI solution or NaOH solution to remove the inorganic dirts by dissolving. Even through both the acid and the akali solution were effective the latter was not recommendable because it broke the pore structure by dissolving the elements of the media. This media was mainly consisted of SiO2 with $Al_2O_3$ as a minor component and CaO and K2O as trace elements. It had the finely developed pores of $15-80\mu\textrm{m}$size. Yeast immobilization capacity of this media was about $5{\times108}$ cells/ml bed which is large enough to be used for the practical applications. Yeast immobilization capacities of Alumina and Cordierite were much smaller than that of silica-based media. Scanning electron micrograph of Cordierite and Alumina showed uneven surfaces and small size of pores in contrast to relatively smooth surface and large pores of silica based media which means that smooth surface and large pores are desirable for the good adsorption of microbes on the media.

  • PDF

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Silica aerogels for potential sensor material prepared by azeotropic mixture (공비혼합물로 제조된 다공성 센서재료용 실리카 에어로젤)

  • Shlyakhtina, A.V.;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.395-400
    • /
    • 2007
  • Ambient drying sol-gel processing was used for monolithic silica ambigels in the temperature range of $130-250^{\circ}C$. A new method of mesopore ambigels, which mean the aerogels prepared by ambient pressure drying process synthesis, is suggested at first. This method includes two important approaches. The first point is that $SiO_{2}$ surface modification of wet gel was performed by trimethylchlorosilane in n-butanol solution. This procedure is provided the silica gel mesopore structure formation. The second point is a creation of the ternary azeotropic mixture water/n-butanol/octane as porous liquid, which is effectively provided removing of water such a low temperature by 2 step drying condition under ambient pressure. The silica aerogels, which were prepared by ambient pressure drying from azeotropic mixture of water/n-butanol/octane, are transparent, crack-free and mesoporous (pore size ${\sim}$ 5.6 nm) with surface area of ${\sim}$ $923{\;}m^2/g$, bulk density of $0.4{\;}g/cm^3$ and porosity of 85 %.

Thickness Dependence of Orientation, Longitudinal Piezoelectric and Electrical Properties of PZT Films Deposited by Using Sol-gel Method (솔젤법에 의해 제조한 PZT(52/48) 막의 두께에 따른 우선배향성의 변화 및 이에 따른 압전 및 전기적 물성의 변화 평가)

  • Lee, Jeong-Hoon;Kim, Tae-Song;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.942-947
    • /
    • 2001
  • Thickness dependence of orientation on piezoelectric and electrical properties was investigated by PZT (52/48) films by diol based sol-gel method. The thickness of each layer by spinning at one time was $0.2{\mu}m$ and crack-free films could be successfully deposited on 4 inches Pt/Ti/$SiO_2$/Si substrates by 0.5 mol solutions in the range from $0.2{\mu}m$ to $3.8{\mu}m$. Excellent P-E hysteresis curves were achieved, which were attributed to the well-densified PZT films and columnar grain without pores or any defects between interlayers. The (111) preferred orientation of films were shown in the range of thickness below $1{\mu}m$. As the thickness increased, the (111) preferred orientation disappeared from $1{\mu}m$ to $3{\mu}m$ region, and the orientation of films became random above $3{\mu}m$. Dielectric constants and longitudinal piezoelectric coefficient, $d_{33}$, measured by pneumatic method were saturated around the value of about 1400 and 300 pC/N respectively above the thickness of $1{\mu}m$.

  • PDF

Performance of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 나노세라믹 필터의 성능 평가)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.751-756
    • /
    • 2009
  • In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has $30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with $SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with $SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at $200{\sim}1400^{\circ}C$. The efficiency is measured 96.67% at the particle size of $0.31{\mu}m$, which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient.

  • PDF

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area - (제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 -)

  • Kang, Youn-Ku;Lim, Tae-Sub
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.

Deposition Properties of NiCr Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법으로 제조한 NiCr 박막의 증착 특성)

  • Kun, Yong;Park, Yong-Ju;Choi, Seoung-Pyung;Jung, Jin;Choi, Gwang-Pyo;Ryu, Hyun-Wook;Park, Jin-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.450-455
    • /
    • 2004
  • NiCr thin films were fabricated by thermal evaporation method using NiCr alloy as evaporating source. NiCr thin films were annealed at various temperatures in air atmosphere in order to investigate effects of annealing conditions on phase change, composition, and microstructures of NiCr films. Typical multilayer was formed after annealing in air atmosphere. This results from the diffusion and oxidation of Cr toward surface during annealing. In the case of annealing at 700$^{\circ}C$, large columnar grains of NiO were formed on Cr-oxide layer through the diffusion and oxidation of Ni over Cr-oxide layer. Especially, NiO layer was formed additionally on surface, sustaining the underlayer structure with the formation of porous Ni layer.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.