• Title/Summary/Keyword: Porous $TiO_2$

Search Result 219, Processing Time 0.025 seconds

Preparation of Porous Glasses by the Phase-separation of the Silicate Glass Containing $TiO_2$ ($TiO_2$를 함유한 규산염 유리의 상분리를 이용한 다공질 유리의 제조)

  • 김병훈;최석진;박태철
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Microporous glasses in the system TiO2-SiO2-Al2O3-B2O3-CaO-Na2O were prepared by the phase-separation technique. Morphology and distribution of pore and specific surface area of glasses heated and leached out at various conditions were investigated by SEM and Porosimeter. Crystallization of glasses heated above transition temperature was also inspected by X-ray diffraction method. When the heating temperature and time increased, the pore size and volume increased, but the specific surface area decreased above the critical temperature. The phase-separation, specific surface area and pore size showed more sensitive change on the variation of heating temperature than of heating time. The specific surface area and micropore volume of porous glasses prepared in this study were about 120-330$m^2$/g and 0.001-0.01cc/g, respectively. Mean pore size of porous glasses were about 20-90$\AA$. Anatase phases was deposited when the parent glass was heat-treated at 75$0^{\circ}C$ for 6hrs.

  • PDF

A Study on the Porous Glass-Ceramics in the Phosphate System (인산염계 다공질 결정화 유리에 관한 연구)

  • 박용완;현부성;김태호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.858-864
    • /
    • 1995
  • A porous glass-ceramics body was prepared in the phosphate system. The glass composition of 47.2CaO-22.2TiO2-30.6P2O5 (mol%) containing a few weight percent of ZrO2 was suitable for a mother glass of a porous glass-ceramics. The dense glass-ceramics body was made by a two-step heat treatment of the mother glass. The crystalline phases of the glass-ceramics were $\beta$-Ca3(PO4)2 and CaTi4(PO4)6. The $\beta$-Ca3(PO4)2 phase could be selectively leached out with HCl solution and thus a crystalline $\beta$-Ca3(PO4)2 skeleton was remained. The dimension and shape of the porous glass-ceramics were nearly the same as the those of the first formed glass. The specific surface area and average proe radius of the porous glass-ceramics were 19$m^2$/g and 22 nm, respectively.

  • PDF

Formation Mechanisms of TiO2 Layer by Electrochemical Method (전기화학적 방법에 의한 TiO2 피막의 생성기구)

  • O, Han-Jun;Lee, Jong-Ho;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.482-487
    • /
    • 2002
  • A $TiO_2$ film for photocatalyst was prepared by anodic oxidation at 180V in acidic electrolyte and film formation mechanism was studied. The major part of anodic $TiO_2$ film consisted of anatase type structure and surface morphology exhibited a porous cell structure. The thickness growth rate of the oxide film with anodization time revealed two-stage slope corresponds to the surface morphology between anodic films. The growth of pores on cell structure and the growth rate of film with two-stage slope are related to the constant formation rate of the $TiO_2$ layer.

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee;Kyung-Sik Oh;Yeong-Kyeun Paek
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

Fabrication of High-Efficiency Electrochemiluminescence Cell with Nanocrystalline TiO2 Electrode (나노입자 이산화티타늄 전극 기반의 고효율 전기화학형 발광 셀 제작)

  • Kwon, Hyuk-Moon;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.363-368
    • /
    • 2010
  • In this work, electrochemiluminescence (ECL) cell using nanocrysralline $TiO_2$ electrode and Ru(II) complex (Ru${(bpy)_3}^{2+}$) is fabricated for low-cost high-efficient energy conversion device application. The nanocrysrallme $TiO_2$ layer (${\sim}10{\mu}m$ thickness) with large surface area (${\sim}360m^2$/g) can largely inject electrons from nanoporous $TiO_2$ electrode and allows the oxidation/reduction of Ru(II) complex in the nanopores. The cell structure is composed of a glass/ F-doped $SnO_2$(FTO)/ porous $TiO_2$/ Ru(II) complex in acetonitrile/ FTO/ glass. The nanocrysralline $TiO_2$ layer is prepared using sol-gel combustion method. The ECL efficiency of the cell consisting of the porous $TiO_2$ layers was 250 cd/W, which was higher than that consisting of only FTO electrode (50cd/W). The nanoporous $TiO_2$ layers wwas effective for increasine ECL intensities.

Antibacterial Effect of Porous Glass Ceramics as Ag Ion Exchange in Phosphate System (Phosphate계 다공성 글라스 세라믹스의 $Ag^+$ 이온교환에 따른 항균 효과)

  • 윤영진;이용수;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1055-1059
    • /
    • 2001
  • Porous glass ceramics composed of Li$_2$O.-Ti $O_2$-P$_2$ $O_{5}$ -CaO were prepared by melting and 2 step heat treatment for nucleation at 61$0^{\circ}C$ and crystallization at 78$0^{\circ}C$. subsequently $\beta$-Ca$_3$(P $O_4$)$_2$crystal phase was selectively leached out in 1N-HC1 solution for 3 days, leaving Li $Ti_2$(P $O_4$)$_3$crystal phases. prepared porous glass ceramics were immersed in 1M AgN $O_3$solution for ion exchange. Staphylococcus aureus and salmonella typhi were used in this study. It was found taht the resultant porous glas ceramics show excellent bacteriostatic properties.

  • PDF

Development of an electrochemi-Iuminescenece device (전기화학형 발광소자 개발)

  • Kwon, Hyuk-Moon;Sung, YouI-Moon;Ji, Jong-Gook;Lee, Myung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.141-144
    • /
    • 2009
  • In this study, used simplest sandwich cells containing $Ru2^+$ liquid electrolytes in order to clarify the role of nanoporous $TiO_2$ electrodes. And, the cell structure is as follow: $F:SnO_2$ glass/ nanoporous $TiO_2$/ tris(2,2'-bipyridy)ruthenium(ll) colplex [$Ru(bpy)_3(PF_6)_2$] in acetonitrile/ $F:SnO_2$ glass. The result, we found that ECL intensities increased rapidly by use of cathodes with nanoporous $TiO_2$ layers. And, porous $TiO_2$ electrodes were confirmed to be efficient for ECL devices as well as solar cell devices. It is thought that the increases in the ECL intensities may be associated with both formation of $Ru^+$ in porous $TiO_2$ electrodes and the process taking place after reduction of $Ru^+$ which occurs in the nanoporous electrodes.

  • PDF

Carbon/TiO2 Prepared from Anatase to Pitch and their Photocatalytic Performance

  • Chen, Ming-Liang;Ko, Young-Shin;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2007
  • Carbon/$TiO_2$ composites were prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the Carbon/$TiO_2$ composite series showed a good adsorptivity and photo decomposition activity. The BET surface area for the carbon layer in the sample increases to increasing with pitch contents. The SEM results present to the characterization of porous texture on the Carbon/$TiO_2$ composite and pitch distributions on the surfaces for all the materials used. From XRD data, a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the Carbon/$TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of Carbon/$TiO_2$ with slope relationship between relative concentration (C/$C_0$) of MB and t could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.

Highly Ordered TiO2 nanotubes on pattered Si substrate for sensor applications

  • Kim, Do-Hong;Shim, Young-Seok;Moon, Hi-Gyu;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jang, Ho-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.66-66
    • /
    • 2011
  • Anodic titanium dioxide (TiO2) nanotubes are very attractive materials for gas sensors due to its large surface to volume ratios. The most widely known method for fabrication of TiO2 nanotubes is anodic oxidation of metallic Ti foil. Since the remaining Ti substrate is a metallic conductor, TiO2 nanotube arrays on Ti are not appropriate for gas sensor applications. Detachment of the TiO2 nanotube arrays from the Ti Substrate or the formation of electrodes onto the TiO2 nanotube arrays have been used to demonstrate gas sensors based on TiO2 nanotubes. But the sensitivity was much lower than those of TiO2 gas sensors based on conventional TiO2 nanoparticle films. In this study, Ti thin films were deposited onto a SiO2/Si substrate by electron beam evaporation. Samples were anodized in ethylene glycol solution and ammonium fluoride (NH4F) with 0.1wt%, 0.2wt%, 0.3wt% and potentials ranging from 30 to 60V respectively. After anodization, the samples were annealed at $600^{\circ}C$ in air for 1 hours, leading to porous TiO2 films with TiO2 nanotubes. With changing temperature and CO concentration, gas sensor performance of the TiO2 nanotube gas sensors were measured, demonstrating the potential advantages of the porous TiO2 films for gas sensor applications. The details on the fabrication and gas sensing performance of TiO2 nanotube sensors will be presented.

  • PDF

Fabrication and Characteristics of Sensing Materials for BaTiO3 Gas Sensors (BaTiO3가스센서 감지물의 제조와 특성 연구)

  • 서동진;장경욱;임실묵;김좌연;최병현;박경순
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1177-1182
    • /
    • 2003
  • The porous sensing materials for BaTiO$_3$ gas sensors were fabricated by adding the graphite powders. The crystalline structure and microstructure of the porous BaTiO$_3$-based ceramics were studied. All the sintered bodies showed a tetragonal perovskite structure. The porosity increased with increasing graphite contents. This is mainly due to an enhanced evolution of CO and $CO_2$ gases resulting from the exothermic reactions of graphite and oxygen during the sintering. It was found that the discrepancy in the resistivities measured in air and CO atmospheres at high temperatures (>∼20$0^{\circ}C$) became remarkable with increasing temperature. The sensitivity of CO gas increased with porosity, since the reactions between CO gas and $O_2$$^{[-10]}$ and between CO gas and $O^{[-10]}$ are active due to the formation of many reaction sites. The porous BaTiO$_3$-based ceramics could be promising as a sensing material for CO gas sensors.