• Title/Summary/Keyword: Porous $Al_2O_3-(m-ZrO_2)$ composites

Search Result 4, Processing Time 0.017 seconds

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek;Quang, Do Van;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.291-296
    • /
    • 2007
  • Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

Preparation of $ZrO_2/Al_2O_3-Mullite$ Composites Using the Silica Sol Infiltration Method (실리카 졸 침투법을 이용한 $ZrO_2/Al_2O_3-Mullite$ 복합체의 제조)

  • 현상훈;최지영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.719-728
    • /
    • 1992
  • ZrO2/Al2O3-Mullite composites were prepared by infiltration of the silica sol to the porous ZrO2/Al2O3 bodies. The porous ZrO2/Al2O3 bodies for infiltration were fabricated using ZrO2 (20wt%)/Al2O3 composite powders synthesized by the emulsion-hot kerosene drying method. The preparation of silica sols was conducted by the hydrolysis-peptization of an alcoholic TEOS solution. When ZrO2/Al2O3-Mullite and ZrO2/Al2O3 composites were sintered at 1$650^{\circ}C$ for 4 hrs, both of them showed an excellent sinterability. As the amount of mullite added in the composites increased, the ratio of the tetragonal phase of zirconia to the monoclinic phase at the room temperature became higher. It was known that values of the fracture toughness of the ZrO2/Al2O3-Mullite composites were about 5.48 MPa.m1/2 much larger than that of the ZrO2/Al2O3 system.

  • PDF

Control of Microstructures and Properties of Composites of the $Al_2O_3-ZrO_2-Spinel$ System: II. $Al_2O_3-ZrO_2-Spinel$ Composites Prepared by the Solution Infiltration Method ($Al_2O_3-ZrO_2-Spinel$계 복합체의 미세구조 및 물성제어: II. 용액침투법에 의한 $Al_2O_3-ZrO_2-Spinel$ 복합소결체)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.811-818
    • /
    • 1993
  • Al2O3/ZrO2-Spinel composites were prepared by infiltrating magnesium sulfate solution into the porous preform made from Al2O3-20wt% ZrO2 composite powders derived through an emulsion route. The microstructure and composition of the modified composites could be controlled by manipulating the presingtering temperature of the preform, infiltration time, and so on. It was found that spinel phases were concentrated near the surface than in the interior of the Al2O3/ZrO2-Spinel composites infiltrated for 6hrs, while spinel phases were uniformly distributed in the comosites infiltrated for 2 days. The relative density and fracture toughness of the composite infiltrated for 6 hrs were 98.6% and 7.2MN/m3/2, respectively.

  • PDF

Fabrication of Functionally Gradient Porous Al2O3-(t-ZrO2)/HAp Composites and their In-Vitro Study (조성 경사구조를 갖는 다공질 Al2O3-(t-ZrO2)/HAp 복합체의 제조 및 In-Vitro 실험)

  • Kim, Ki-Ho;Kim, Young-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.504-508
    • /
    • 2006
  • Functionally gradient porous $Al_2O_3-(t-ZrO_2)/HAp$ composites consist of 3 layers were fabricated using the multi-pass extrusion process at the various temperatures. The continuous pores were homogeneously formed in the $2^{nd}$ passed samples and their size was about $180{\mu}m$ in diameter. In the porous composites sintered at $1200-1400^{\circ}C$, the relative density and bending strength increased with the sintering temperature. The maximum values of relative density and bending strength in the $2^{nd}$ passed $Al_2O_3-(t-ZrO_2)/HAp$ composites were 62.2% and 107.8 MPa, respectively. In order to investigate the growth behavior of osteogenic cells on the functionally gradient porous $Al_2O_3-(t-ZrO_2)/HAp$ composites, an in vitro test was performed, using human osteoblast-like MG-63 cells. The cells were well attached and grown on the rough surface of the inside of the functionally gradient porous body.