• 제목/요약/키워드: Porosity Technique

검색결과 186건 처리시간 0.025초

수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구 (A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity)

  • 권성준;송하원;박상순
    • 콘크리트학회논문집
    • /
    • 제19권5호
    • /
    • pp.613-621
    • /
    • 2007
  • 내구성에 대한 중요성이 부각됨에 따라, 주요 열화현상인 탄산화에 대한 연구가 많이 진행되고 있다. 그러나 탄산화에 대한 연구는 주로 탄산화 깊이의 도출에 국한하고 있으며 경화된 콘크리트를 가정하므로 실제적인 탄산화 거동과는 많은 차이를 보이고 있다. 강재와는 다르게 콘크리트는 공극률과 내부의 수화물의 거동이 매우 중요한데, 탄산화 진행에 따라 초기재령에서 결정되어지는 거동 (공극률 및 수화물)이 다르게 변화한다. 열화 물질의 이동은 주로 콘크리트의 공극률 및 포화도에 의존하므로, 탄산화 후의 거동 평가는 장기열화해석 및 복합열화해석 등에 고려되는 것이 바람직하다. 공극률의 경우, 변화된 공극률이 고려되지 않으면 확산계수의 감소가 구현될 수 없으며 이에 따라 과다한 탄산화 해석을 야기하게 된다. 한편 수화물, 특히 수산화칼슘의 잔존량 평가는 탄산화 깊이의 평가 및 내부 공극수의 특성 변화를 결정하기도 하며, 복합열화에서 발생하는 고정화 염화물량에 큰 영향을 주게 된다. 그러므로 실내 실험들을 통한 공극률 및 수화물 분석은 최근들어 탄산화에 대해서도 많이 적용되고 있다. 본 연구는 미세 관측 실험을 통하여, 탄산화 전후의 공극률 분포 변화, 수화물 거동의 변화를 실험적으로 수행하였다. 공극률 측정으로는 MIP 실험을, 수화물 변화에서는 TGA 실험을 수행하였으며, 기존의 해석 모델인 다상복합수화발열모델 및 미세 공극 구조 형성모델을 개선하여 각각의 탄산화 이후의 공극률 변화 및 수화물 변화를 개발하였다. 개발된 각각의 모델의 결과는 탄산화 전후의 공극률 및 수화물의 변화를 잘 예측하였으며, 탄산화 이후의 열화현상 등에 기초적으로 사용될 수 있을 것으로 평가되었다.

Preparation of PVDF/PEI double-layer composite hollow fiber membranes for enhancing tensile strength of PVDF membranes

  • Yuan, Jun-Gui;Shi, Bao-Li;Ji, Ling-Yun
    • Membrane and Water Treatment
    • /
    • 제5권2호
    • /
    • pp.109-122
    • /
    • 2014
  • Polyvinylidene fluoride (PVDF) hollow fiber membrane is widely used for water treatment. However, the weak mechanical strength of PVDF limits its application. To enhance its tensile strength, a double-layer composite hollow fiber membrane, with PVDF and polyetherimide as the external and inner layers, respectively, was successfully prepared through phase inversion technique. The effects of additive content, air gap distance, N,N-dimethyl-acetamide content in the inner core liquid, and the temperature of external coagulation bath on the membrane structure, permeation flux, rejection, tensile strength, and porosity were determined. Experimental results showed that the optimum preparation conditions for the double-layer composite hollow fiber membrane were as follows: PEG-400 and PEG-600, 5 wt%; air gap distance, 10 cm; inner core liquid and the external coagulation bath should be water; and temperature of the external coagulation bath, 40 C. A single layer PVDF hollow fiber membrane (without PEI layer) was also prepared under optimum conditions. The double-layer composite membrane remarkably improved the tensile strength compared with the single-layer PVDF hollow fiber membrane. The permeation flux, rejection, and porosity were also slightly enhanced. High-tensile strength hollow fiber PVDF ultrafiltration membrane can be fabricated using the proposed technique.

Iron(III) removal from aqueous solution using MCM-41 ceramic composite membrane

  • Basumatary, Ashim Kumar;Kumar, R. Vinoth;Pakshirajan, Kannan;Pugazhenthi, G.
    • Membrane and Water Treatment
    • /
    • 제7권6호
    • /
    • pp.495-505
    • /
    • 2016
  • Mesoporous MCM-41 was deposited on an inexpensive disk shaped ceramic support through hydrothermal technique for ultrafiltration of $Fe^{3+}$ from aqueous solution. The ceramic support was fabricated using uni-axial compaction technique followed by sintering at $950^{\circ}C$. The characteristics of MCM-41 powder as well as the composite membrane were examined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), porosity and pure water permeation test. The XRD result revealed the good crystallinity and well-resolved hexagonally arranged pore geometry of MCM-41. TGA profile of synthesized MCM-41 zeolite displayed the three different stepwise mechanisms for the removal of organic template. The formation of MCM-41 on the porous support was verified by FESEM analysis. The characterization results clearly indicated that the accumulation of MCM-41 by repeated coating on the ceramic disk directs to reduce the porosity and pore size from 47% to 23% and 1.0 to $0.173{\mu}m$, respectively. Moreover, the potential of the fabricated MCM-41 membrane was investigated by ultrafiltration of $Fe^{3+}$ from aqueous stream at various influencing parameters such as applied pressure, initial feed concentration and pH of solution. The maximum rejection 85% was obtained at applied pressure of 276 kPa and the initial feed concentration of 250 ppm at pH 2.

도시하수 슬러지의 탈수특성 연구 (Dewatering Characteristics of Sewage Sludge Produced by the Biological Treatment Process)

  • 이재복;황정욱;권일;정태학
    • 상하수도학회지
    • /
    • 제9권2호
    • /
    • pp.84-96
    • /
    • 1995
  • The dewatering characteristics of the sewage sludge was investigated through the experimental observations and model simulations. The activated sludge and the anaerobically digested sludge were examined for the dewaterability evaluation within the pressure range of $0{\sim}10^6N/m^2$. Modified Buchner funnel test and compression test by the consolidometer were conducted to evaluate average specific resistance, porosity, and moisture percentage of filter cake. Shirato's technique of compression-permeability test was followed for the pressure range lower than about $10^2N/m^2$. The flocculation effects on sludge dewatering was also examined for ferric chloride and polymeric flocculant. The application of hydrated lime which can be used for flue-gas desulfurization showed improved moisture percentage, and was thought to have positive feasibility in combined system of sludge dewatering and incineration. Determined characteristic constants were applied to Tiller's cake filtration model to simulate liquid pressure distribution and porosity distribution in cake. Model simulations showed a sharp drop of the porosity close to the cake-medium interface for the highly compressible material such as the activated sludge and the anaerobically digested sludge.

  • PDF

석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조 (Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash)

  • 김원영;지형빈;양태영;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji;Fabrice, Bernard;Royal, Madan;Ali, Alnujaie;Mofareh Hassan, Ghazwani
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.233-246
    • /
    • 2023
  • Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping;Shan, Huafeng;Chu, Weishen;Chen, Yongji
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.101-115
    • /
    • 2022
  • Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.