• Title/Summary/Keyword: Pores/Porosity

Search Result 319, Processing Time 0.019 seconds

Physical Properties Evaluation of Porous Concrete according to Target Porosity and Pumice Contents Ratio for Application of the Aquatic Environment (수계환경 적용을 위한 설계공극률 및 부석 혼입률에 따른 포러스콘크리트의 물리적 특성 평가)

  • Kim, Woo-Suk;Park, Jae-Roh;Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.703-711
    • /
    • 2016
  • The present study is mainly aimed at securing adequate pores which are applicable to the aquatic environment and satisfying the required strength of porous concrete as a structure by substituting pumice for crushed stone which is usually used for the fabrication of porous concrete. Accordingly, in order to deduce the optimum mixing conditions applicable to the aquatic environment, we sought to evaluate the porosity, coefficient of permeability and compressive strength of porous concrete based on the target porosity and the mixing factors for pumice. By examining the porosity and coefficient of permeability of porous concrete and the physical properties of its compressive strength based on the target porosity and the mixing factors for pumice, it is judged that the optimum mixtures for porous concrete applicable to the aquatic environment which satisfy both the necessity of securing adequate pores and the required strength for porous concrete as a structure are PC I I-10-0, PC I I-10-5 and PC I I-10-10.

Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics (기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향)

  • Choi, Young-Hoon;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

The Fabrication and Characteristics of Porous Ceramics by Pressureless Powder Packing Forming Method ; II, Mullite & Cordierite (무가압분말 충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : II. 뮬라이트 & 코디어라이트)

  • 박정현;황명익;김동희;최환욱;김용남
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.671-678
    • /
    • 1999
  • Porous ceramics were fabricated from pressureless powder packing forming method using mullite and cordierite powders granulate by spray drying. The bending strength and shrinkage of porous ceramics were increased and their porosity were decreased with increasing temperature. It showed homogeneous distribution of 2$\mu\textrm{m}$ intergranular pores of mullite at 1400$^{\circ}C$, 2.5$\mu\textrm{m}$ intergranular pores of cordierite at 1300$^{\circ}C$ respedtively. Above that temperature intragranular particles were sintered and sintering by intergranular necking was extremely proceeded. In the test of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.

Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models

  • Han, Su Yeon;Kim, Sung Jun;Shin, Eui Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • A poroelastic composite material, containing different material phases and filled with fluids, serves as a model to formulate the overall ablative behaviors of such materials. This article deals with the assessment of variation in nondeterministic poroelastic properties of two-phase composite materials using micromechanical representative volume element (RVE) models. Considering the configuration and arrangement of pores in a matrix phase, various RVEs are modeled and analyzed according to their porosity. In order to quantitatively investigate the effects of microstructure, changes in effective elastic moduli and poroelastic parameters are measured via finite element (FE) analysis. The poroelastic parameters are calculated from the effective elastic moduli and the pore-pressure-induced strains. The reliability of the numerical results is verified through image-based FE models with the actual shape of pores in carbon-phenolic ablative materials. Additionally, the variation of strain energy density is measured, which can possibly be used to evaluate microstress concentrations.

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni (Camphor-Naphthalene 동결제 조성이 Cu-Ni 다공체의 기공구조에 미치는 영향)

  • Kwon, Na-Yeon;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.362-366
    • /
    • 2015
  • The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process (3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구)

  • Son, Byoung-hwi;Hong, Jae-geun;Hyun, Yong-taek;Bae, Seok-choun;Kim, Seung-eon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.