• Title/Summary/Keyword: Pore-size

Search Result 1,942, Processing Time 0.026 seconds

Pore Size and its Distribution as a Function of Sintered Density of UO2-20 wt%CeO2Pellets (UO2-20 wt%CeO2소결체의 밀도에 따른 기공크기 및 분포)

  • 나상호;김기홍;김시형;이영우;유명준
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2003
  • Open/closed porosity, pore size and its distribution and pore type as a funtion of sintered density of UO$_2$-20 wt%CeO$_2$ pellets were investigated. Pore appeared almost closed-type with the density above 96% of the theoretical density. Bimodal pore size distribution was observed regardless of the sintered density, but the number of pore decreased with increasing the sintered density. The shape of pore was changed from irregular shape to round type with increasing the sintered density.

Realistic pore structure of Portland cement paste: experimental study and numerical simulation

  • Ma, Hongyan;Li, Zongjin
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.317-336
    • /
    • 2013
  • In this study, the pore structure of Portland cement paste is experimentally characterized by MIP (mercury intrusion porosimetry) and nitrogen adsorption, and simulated by a newly developed status-oriented computer model. Cement pastes with w/c=0.3, 0.4 and 0.5 at ages from 1 day to 120 days are comprehensively investigated. It is found that MIP cannot generate valid pore size distribution curves for cement paste. Nevertheless, nitrogen adsorption can give much more realistic pore size distribution curves of small capillary pores, and these curves follow the same distribution mode. While, large capillary pores can be effectively characterized by the newly developed computer model, and the validity of this model has been proved by BSE imaging plus image analysis. Based on the experimental findings and numerical simulation, a hypothesis is proposed to explain the formation mechanism of the capillary pore system, and the realistic representation of the pore structure of hydrated cement paste is established.

Effects of Additives on the Microstructure and Mechanical Properties in Porous Aluminum Titanate Ceramics (각종 첨가제가 다공성 Aluminum Titanate Ceramics의 미세구조 및 기계적 특성에 미치는 영향)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • This experiments were focused on a modification of mechamical properties and structure in porous aluminum titanate ceramics by new additives which have been not researched yet. These were consisted of four kinds of additives i.e. Bi2O3, FeO, ZnO and NiO by addition amount of 1 wt% and 5 wt% respectively. The addition of Bi2O3 retarded a degree of syntehsis of aluminum titanate and accelerated in FeO, ZnO, NiO additives. Also, the most effective accelerator in synthesis of alunium titanate was FeO. A additives for the most effective of modification of microstructure, sharp distribtion of pore size and mechanical proterties was on ZnO addition and showed the lowest average pore size and narrowed pore size distribution. In order to improve of microstructure and pore size distribution in porous aluminum titanate ceramics was desired the addition amount of 1 wt% compare to 5 wt%.

  • PDF

Properties of Antimicrobial Membrane Using an N-Halamine Material (N-Halamine을 이용한 항균 멤브레인의 특성)

  • Baek, Ji-Yoon;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2009
  • N-Halamines are compounds which have covalent bonding between nitrogen and halogen. N-Halamine materials possess strong antimicrobial properties against wide spectrum of bacteria. The aim of this study is to prepare N-halamine membranes using m-aramid and poly(vinyl alcohol) (PVA). Surface characteristics using scanning electron microscope (SEM), pore size distribution, liquid permeability and mean pore size were measured to confirm feasibility as membrane. The results indicated that increased PYA portion up to 15% in the m-aramid/PVA blend resulted in improved pore size distribution, liquid permeability as well as mean pore size. Furthermore, antibacterial efficacy of the membranes after chlorination was confirmed and the results showed that bacteria in water were inactivated.

Development of the Experimental Apparatus to Measure a Pore Size of Micro-pore Fabrics Used for a Bedding to Block the House Dust Mite Allergen (집먼지 진드기 알레르겐 차단 침구에 사용되는 극세 공극 직물의 공극 측정을 위한 입자 투과 실험 장치의 개발)

  • Kim, Donhue
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.557-563
    • /
    • 2022
  • In order to measure the allergen penetration of micropore fabrics, it is necessary to develop a convenient and appropriate experimental method for measuring a pore size of micropore fabrics. In this study, a simple and economical experimental apparatus was developed for the analysis of the pore size of micropore fabrics by measuring the weight reduction rate. In addition, the allergen blocking properties was evaluated by measuring the pore sizes of various fabrics. According to this study, the size of the pores of the microporous fabric could be obtained by measuring the weight reduction rates. In addition, higher weight reduction rate was obtained as the suction pressure passing through the particle permeation device decreased and the suction time was increased. It is expected that the developed experimental method and apparatus can be utilized as an experimental standard for quality control methods to verify the effectiveness of micropore fabrics used for house dust mite blocking bedding.

A Study on the Pore Characteristics of the U$O_2$ Fuel (U$O_2$핵연료의 기공 특성에 대한 연구)

  • Song, K-W;K.S. Seo;Sohn, D-S;Kim, S.H.;I.S.Chang;H.S. Chang
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 1991
  • The microstructure and pore characteristics have been studied on the sintered UO$_2$pellet which was made of the UO$_2$powder manufactured via AUC process. The open porosity decrease with the density and is nearly annihilated above the density of 10.45 g/㎤. The round pore smaller than 3 $\mu$m exist In all densities. The large and elongated pore appears additionally In low density The pore in low density is more elongated than the pore in high density The distribution of the pore area versus the pore size is monomodal and shows its peak on the pore size of 2 to 3 $\mu$m. As the density decreases, the related area of large pore Increases.

  • PDF

Microfiltration of Chlorella sp.: Influence of material and membrane pore size

  • Ahmad, A.L.;Yasin, N.H. Mat;Derek, C.J.C.;Lim, J.K.
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.143-155
    • /
    • 2013
  • Four membranes were used to separate Chlorella sp. from their culture medium in cross-flow microfiltration (MF) experiments: cellulose acetate (CA), cellulose nitrate (CN), polypropylene (PP) and polyvinylidenefluoride (PVDF). It was found that the hydrophilic CA and CN membranes with a pore size of 1.2 ${\mu}m$ exhibited the best performances among all the membranes in terms of permeation flux. The hydrophobicity of each membrane material was determined by measuring the angle between the water (liquid) and membrane (solid). Contact angle measurements showed that deionized (DI) water had almost adsorbed onto the surfaces of the CA and CN membranes, which gave $0.00^{\circ}$ contact angle values. The PP and PVDF membranes were more hydrophobic, giving contact angle values of $95.97^{\circ}$ and $126.63^{\circ}$, respectively. Although the pure water flux increased with increasing pore diameter (0.8 < 1.2 < 3.0 ${\mu}m$) in hydrophilic CA and CN membranes, the best performance in term of filtration rate for filtering a microalgae suspension was attained by membranes with a pore size of 1.2 ${\mu}m$. The fouled membrane pore sizes and pore blocking were inspected using a scanning electron microscope (SEM). MF with large pore diameters was more sensitive to fouling that contributed to intermediate blocking, where the size of the membrane pores is almost equivalent to that of cells.

Effect of Air Distributor Pore Size in Foam Separator of Sea Water (해수의 포말분리시 공기분산기 기공크기 영향)

  • SUH Kuen-Hack;KIM Byong-Jin;LEE Jung-Hoon;LIM Jun-Heok;YI Gyeongbeom;KIM Yong-Ha;JO Jae Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.254-262
    • /
    • 2003
  • Effect of the air distributor pore size for the removal of aquacultural waste, such as protein, total suspended solids (TSS), chemical oxygen demand (COD), turbidity and total ammonia nitrogen (TAN) from sea water was investigated by using foam separator. With the increase of pore size of air distributor, removal rates and efficiency of protein decreased. Removal rate by commercial air stone was in the range between the removal rates by G2 and G4 sintered glass discs. Within the range of pore size distributor from Gl to G4, the removal efficiency of protein were ranged from 21 to $42\%.$ The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was removed by stripping. The pore size of air distributor for a higher overall oxygen mass transfer coefficient and saturation efficiency provided the condition for higher protein removal rate. Also the foam separator could be used as an aerator.

Preparation of Ceramic Foam Filter and Air Permeability (집진용 세라믹 필터의 제조 및 공기 투과 특성)

  • 박재구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2000
  • Ceramic foam prepared with cordierite as a starting material by foam method was tested to evaluate the feasibility as a filter for the dust collection in hot gas. Two different types of agents Benzethonium chloride (BZTC, C27H42NO2Cl) and Sodium Lauryl Sulfate(SLS, CH3(CH2)11OSO3Na) were used as foaming agents in foaming process. Porosityof ceramic foam was about 80% and mean pore size were 100${\mu}{\textrm}{m}$ for SLS agent and 200 ${\mu}{\textrm}{m}$ for BZTC. It was observed that ceramic foam was composed of continuous macro-pore structure with opening windows interconnecting macro-pores. The surface of ceramic foam support of was coated with cordierite particles ranged from 20${\mu}{\textrm}{m}$ to 50${\mu}{\textrm}{m}$ Meso-pore size in the coating layer on ceramic foam was below 10${\mu}{\textrm}{m}$. While air permeability of the support increased with increasing macro-pore size coated ceramic filters showed a constant permeability without regard to the macro-pore size of the support. The permeabuilities of support varied in the range of 600$\times$10-13m2 to 1000$\times$10-13m2. For the case of coated ceramic filter it was about 200$\times$10-13m2. As a result of particle trapping test by using fly ash the particle removal efficiency was over the 99.9%.

  • PDF

Effect of pore structure on electrochemical performance of EDLC (EDLC의 전기화학적 성능에 대한 메조기공 구조의 효과)

  • Lee, Myung-Suk;Shin, Yun-Sung;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.310-317
    • /
    • 2010
  • The electrochemical properties of electric double layer capacitor(EDLC) was studied by controlling pore size distribution and specific surface area of the activated carbon fiber(ACF). The mesoporous ACF, which was prepared by the iron exchange method, showed the tendency of increasing average pore size and decreasing total surface area. The mesoporous ACF (surface area = 2225 $m^2$/g, pore size=1.93 nm) showed increased mesopore(pore size=1~3nm) volume from 0.055 cc/g to 0.408 cc/g compared to its raw ACF. The charging capacity of the EDLC which uses the prepared mesoporous ACF also increased from 0.39 F/$cm^2$ to 0.55 F/$cm^2$. From these results, it can be known that the electrochemical properties of EDLC are mainly dependent on the specific surface area, but above the surface area 2200 $m^2$/g, it is the mesopore volume that affects the performance of the capacitor considerably. Because the increased mesopore volume results in a decreased ion mobility resistance, the charge capacitance is enhanced.