• Title/Summary/Keyword: Pore-scale modeling

Search Result 12, Processing Time 0.022 seconds

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.

Understanding and predicting physical properties of rocks through pore-scale numerical simulations (공극스케일에서의 시뮬레이션을 통한 암석물성의 이해와 예측)

  • Keehm, Young-Seuk;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.201-206
    • /
    • 2006
  • Earth sciences is undergoing a gradual but massive shift from description of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled. In addition, we are especially challenged when the processes take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks, which is a nonlinear, coupled and time-dependent problem and occurs in complex porous media. To understand and simulate these complex processes, the knowledge of underlying pore-scale processes is essential. This paper presents a new attempt to use pore-scale simulations for understanding physical properties of rocks. A rigorous pore-scale simulator requires three important traits: reliability, efficiency, and ability to handle complex microstructures. We use the Lattice-Boltzmann (LB) method for singleand two-phase flow properties, finite-element methods (FEM) for elastic and electrical properties of rocks. These rigorous pore-scale simulators can significantly complement the physical laboratory, with several distinct advantages: (1) rigorous prediction of the physical properties, (2) interrelations among the different rock properties in a given pore geometry, and (3) simulation of dynamic problems, which describe coupled, nonlinear, transient and complex behavior of Earth systems.

  • PDF

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Biofiltration Modeling for Packing Media Compared To a Small-scale Operation (바이오필터 담체 모델링 및 운전자료 비교에 대한 연구)

  • Huh Nam-Soo;Cho Daechul;Kwon Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.272-273
    • /
    • 2004
  • Filter media are one of themost important choices when bilfiltration is applied. Filter media provide adsorbing microbes with available sites for residence and the residential cells grow to degrade or decompose target waste gases. Up to date, filter media were only qualitatively analyzed. As a quantitative approach to filter material for biofiltration, a simple model based on reaction kinetics and mass action law (Ottengraf's Model in 1983) was presented. Cork, zeolite, and granulated activated carbon were tested in terms of effective surface area, cell covered fraction of adsorbing sites, surface roughness, and pore size distribution. The cell covered fraction, surface roughness and hydrophilicity was found to be closely related to the efficiency of gas degradation in biofiltration. The cork was the best candidate for cell residence and growth in this work.

  • PDF

Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities

  • Fenjan, Raad M.;Ahmed, Ridha A.;Alasadi, Abbas A.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.247-257
    • /
    • 2019
  • Fee vibrational characteristics of porous steel double-coupled nanoplate system in thermo-elastic medium is studied via a refined plate model. Different pore dispersions called uniform, symmetric and asymmetric have been defined. Nonlocal strain gradient theory (NSGT) containing two scale parameters has been adopted to stablish size-dependent modeling of the system. Hamilton's principle has been adopted to stablish the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, porosity distributions and porosity coefficient on vibration frequencies of metal foam nanoscale plates have been examined.

Case Study on Stability Assessment of Pre-existing Fault at CO2 Geologic Storage (CO2 지중저장 시 단층 안정성 평가)

  • Kim, Hyunwoo;Cheon, Dae-Sung;Choi, Byung-Hee;Choi, Hun-Soo;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.13-30
    • /
    • 2013
  • Increase of pore fluid pressure resulting from injection of $CO_2$ may reactivate pre-existing faults, and the induced seismic activities can raise the safety issues such as seal integrity, restoration of storage capacity, and, in the worst case, removal of previously injected $CO_2$. Thus, fault stability and potential for $CO_2$ leakage need to be assessed at the stage of site selection and planning of injection pressure, based on the results of large-scale site investigations and numerical modeling for various scenarios. In this report, studies on the assessment of fault stability during injection of $CO_2$ were reviewed. The seismic activities associated with an artificial injection of fluids or a release of naturally trapped high-pressure fluids were first examined, and then site investigation methods for the magnitude and orientation of in situ stresses, the distribution and change of pore fluid pressure, and the location of faults were generally summarized. Recent research cases on possibility estimation of fault reactivation, prediction of seismic magnitude, and modeling of $CO_2$ leakage through a reactivated fault were presented.

Simple approach to calculate chloride diffusivity of concrete considering carbonation

  • Yoon, In-Seok
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 2009
  • Chloride diffusivity of concrete is a crucial material parameter for service life determination and durability designing of marine concrete. Many research works on this issue have been conducted, varying from empirical solutions obtained experimentally to image analysis, based on multi-scale modeling. One of the simple approaches is to express the chloride diffusivity of concrete by a multi-factor function, however, the influences of various factors on the chloride diffusivity are ambiguous. Furthermore, the majority of these research works have not dealt with the carbonation process of concrete, although this process affects the chloride diffusivity of concrete significantly. The purpose of this study is to establish a simple approach to calculate the chloride diffusivity of (non)carbonated concrete. The chloride diffusivity of concrete should be defined, based on engineering and scientific knowledge of cement and concrete materials. In this paper, a lot of parameters affecting the chloride diffusivity, such as the diffusivity in pore solution, tortuosity, micro-structural properties of hardened cement paste, volumetric portion of aggregate, are taken into consideration in the calculation of the chloride diffusivity of noncarbonated concrete. For carbonated concrete, reduced porosity due to carbonation is calculated and used for calculating the chloride diffusivity. The results are compared with experimental data and previous research works.

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea (포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.