DOI QR코드

DOI QR Code

Case Study on Stability Assessment of Pre-existing Fault at CO2 Geologic Storage

CO2 지중저장 시 단층 안정성 평가

  • 김현우 (한국지질자원연구원 지구환경연구본부) ;
  • 천대성 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 최헌수 (한국지질자원연구원 석유해저연구본부) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.01.25
  • Accepted : 2013.02.19
  • Published : 2013.02.28

Abstract

Increase of pore fluid pressure resulting from injection of $CO_2$ may reactivate pre-existing faults, and the induced seismic activities can raise the safety issues such as seal integrity, restoration of storage capacity, and, in the worst case, removal of previously injected $CO_2$. Thus, fault stability and potential for $CO_2$ leakage need to be assessed at the stage of site selection and planning of injection pressure, based on the results of large-scale site investigations and numerical modeling for various scenarios. In this report, studies on the assessment of fault stability during injection of $CO_2$ were reviewed. The seismic activities associated with an artificial injection of fluids or a release of naturally trapped high-pressure fluids were first examined, and then site investigation methods for the magnitude and orientation of in situ stresses, the distribution and change of pore fluid pressure, and the location of faults were generally summarized. Recent research cases on possibility estimation of fault reactivation, prediction of seismic magnitude, and modeling of $CO_2$ leakage through a reactivated fault were presented.

$CO_2$를 지중저장하는 과정에서 유체압력의 증가로 인한 단층 활성화는 저장영역의 기밀성 유지에 중대한 영향을 미치며, 상황에 따라 저장기능의 회복 또는 저장중인 $CO_2$의 처리 문제 등으로 확대될 수 있다. 따라서 현지조사 결과의 불확실성을 최소화하고 이를 토대로 부지 선정과 주입압력 결정 단계에서 실제 조건에 가까운 모델링을 수행하여 저장영역 내 단층의 안정성과 $CO_2$ 누출 가능성을 평가하여야 한다. 본 연구에서는 이와 관련된 기존 연구 결과들을 살펴봄으로써 연구 동향 및 연구 방법에 대한 정보를 제공하고자 하였다. 먼저 인위적으로 지반에 주입된 유체 또는 자연 생성되어 응집되어 있던 $CO_2$에 의해 지진활동이 일어났던 사례들을 조사하였으며, 현지응력의 크기 및 방향, 단층 및 유체압력 분포 자료를 획득하는 방법에 대해 살펴보았다. 그리고 단층 활성화 가능성 평가 및 지진활동 시 진동 크기 추정, 활성화에 따른 $CO_2$ 누출 모델링 관련 연구 사례를 정리하였다.

Keywords

References

  1. Barton, C.A., M.D. Zoback and K.L. Burns, 1988, In-situ stress orientation and magnitude at the Fenton geothermal site, New Mexico, determined from wellbore breakouts, Geophys. Res. Lett. 15, 467-470. https://doi.org/10.1029/GL015i005p00467
  2. Byerlee, J., 1978, Friction of rocks, Pageoph 116, 615-626. https://doi.org/10.1007/BF00876528
  3. Cappa, F., J. Rutqvist and K. Yamamoto, 2009, Modeling crustal deformation and rupture processes related to upwelling of deep $CO_2-rich$ fluids during the 1965-1967 Matsushiro earthquake swarm in Japan, J. Geophys. Res. 114, B10304. https://doi.org/10.1029/2009JB006398
  4. Cappa, F. and J. Rutqvist, 2011a, Impact of $CO_2$ geological sequestration on the nucleation of earthquake, Geophys. Res. Lett. 38, L17313.
  5. Cappa, F. and J. Rutqvist, 2011b, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of $CO_2$, Int. J. Greenhouse Gas Control 5, 336-346. https://doi.org/10.1016/j.ijggc.2010.08.005
  6. Celia, M.A. and J.M. Nordbotten, 2011, How simple can we make models for $CO_2$ injection, migration, and leakage? (GHGT-10), Energy Procedia 4, 3857-3864. https://doi.org/10.1016/j.egypro.2011.02.322
  7. Chae, K.S., S.P. Lee, S.W. Yoon and T. Matsuoka, 2010, Trends of underground $CO_2$ storage technology for the large scale reduction of GHG, Tunnel & Underground Space 20.5, 309-317 (in Korean).
  8. Chang, K.W., S.E. Minkoff and S.L. Bryant, 2008, Modeling leakage through faults of $CO_2$ stored in an aquifer, Proceedings of SPE annual technical conference and exhibition, SPE 115929.
  9. Chiaramonte, L., M.D. Zoback, J. Friedmann and V. Stamp, 2008, Seal integrity and feasibility of $CO_2$ sequestration in Teapot Dome EOR pilot: gemechanical site characterization, Environ. Geol. 54, 1667-1675. https://doi.org/10.1007/s00254-007-0948-7
  10. Chin, L.Y., R. Raghavan and L.K. Thomas, 2000, Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability, SPE Journal 5(1), 32-45. https://doi.org/10.2118/58968-PA
  11. Deichmann, N. and D. Giardini, 2009, Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland), Seismol. Res. Lett. 80, 784-798. https://doi.org/10.1785/gssrl.80.5.784
  12. EPA, 2010, Underground injection and seismic activity, http://water.epa.gov/type/groundwater/uic/class6/upload/uicundergroundinjectionandseismicactivitydec2010.pdf (accessed November 26, 2012).
  13. EPA, 2011, Underground injection control (UIC) program class VI well site characterization guidance for owners and operators, http://water.epa.gov/type/groundwater/uic/class6/upload/GS_site_Char_Guidance_DRAFT_FINAL_031611.pdf (accessed November 26, 2012).
  14. Gaarenstroom, L., R.A.J. Tromp, M.C. Jong and A.M. Brandenburg, 1993, Overpressures in the central North Sea: Implications for trap integrity and drilling safety, In: J.R. Parker (ed.), Petroleum geology of northwest Europe: 4th Conference, pp. 1305-1313.
  15. Giammanco, S., M. Palano, A. Scaltrito, L. Scarfi and F. Sortino, 2008, Possible role of fluid overpressure in the generation of earthquake swarms in active tectonic areas: The case of the Peloritani Mts. (Sicily, Italy), J. Volcanol. Geotherm. Res. 178, 795-806. https://doi.org/10.1016/j.jvolgeores.2008.09.005
  16. Kanamori, H. and E.E. Brodsky, 2004, The physics of earthquakes, Rep. Prog. Phys. 67, 1429-1496. https://doi.org/10.1088/0034-4885/67/8/R03
  17. Kim, H.M., E.S. Park, J.H. Synn and Y.C. Park, 2008, Greenhouse gas ($CO_2$) geological sequestration and geomechanical technology component, Tunnel & Underground Space 18.3, 175-184 (in Korean).
  18. Jaeger, J.C. and N.G.W. Cook, 1979, Fundamental of rock mechanics - Third edition, Chapman & Hall, New York.
  19. Lucier, A., M. Zoback, N. Gupta and T.S. Ramakrishnan, 2006, Geomechanical aspects of $CO_2$ sequestration in a deep saline reservoir in the Ohio River Valley region, Environ. Geosci. 13, 85-103. https://doi.org/10.1306/eg.11230505010
  20. Mendes, R.A., A.M. Costa, L.C. Sousa Jr. and L.C. Pereira, 2010, Risks and mitigation problems in a $CO_2$ injection project for a petroleum onshore field in Brazil, In: Proceedings of 44th U.S. rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, Salt Lake City, Utah, U.S.A., pp. 1506-1515.
  21. Miller, S.A., C. Collettini, L. Chiaraluce, M. Cocco, M. Barchi and B.J.P. Kaus, 2004, Aftershocks driven by a high-pressure $CO_2$ source at depth, Nature 427, 724-727. https://doi.org/10.1038/nature02251
  22. Nabighian, M.N., V.J.S. Grauch, R.O. Hansen, T.R. LaFehr, Y. Li, J.W. Peirce, J.D. Phillips and M.E. Ruder, 2005, The historical development of the magnetic method in exploration, Geophysics 70(6), 33ND-61ND. https://doi.org/10.1190/1.2133784
  23. NETL, 2011, Best practice for: Risk analysis and simulation for geologic storage of $CO_2$, DOE/NETL- 2011/1459, http://www.netl.doe.gov/technologies/carbon_seq/refshelf/BPM_RiskAnalysisSimulation.pdf (accessed November 21, 2012).
  24. Nicholson, C. and R.L. Wesson, 1990, Earthquake hazard associated with deep well injection: a report to the U.S. Environmental Protection Agency, 86 p.
  25. Ouellet, A., T. Berard, J. Desroches, P. Frykman, P. Welsh, J. Minton, Y. Pamukcu, S. Hunter and C. Schmidt- Hattenberger, 2011, Reservoir geomechanics for assessing containment in $CO_2$ storage: a case study at Ketzin, Germany, Energy Procedia 4, 3298-3305. https://doi.org/10.1016/j.egypro.2011.02.250
  26. Orange, A.S., 1992, Electrical methods, In: D. Morton- Thomson and A.M. Woods (eds.), Development geology reference manual, AAPG methods exploration series No.10, Tulsa, Oklahoma, pp. 417-419.
  27. Park, E.S., H. Kim, D.S. Cheon and H.S. Choi, 2012, Rock engineering issues in $CO_2$ geologic storage, Proceedings of Symposium of Korean Society of Mineral and Energy Resources Engineers (CCS special session), 84-96 (in Korean).
  28. Rutqvist, J., 2012, The geomechanics of $CO_2$ storage in deep sedimentary formations, Geotech. Geol. Eng. 30, 525-551. https://doi.org/10.1007/s10706-011-9491-0
  29. Segall, P. and S.D. Fitzgerald, 1998, A note on induced stress changes in hydrocarbon and geothermal reservoirs, Tectonophysics 289, 117-128. https://doi.org/10.1016/S0040-1951(97)00311-9
  30. Shimamoto, T. and J.M. Logan, 1981, Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone, Tectonophysics 75, 243-255. https://doi.org/10.1016/0040-1951(81)90276-6
  31. Sminchak, J. and N. Gupta, 2003, Aspects of induced seismic activity and deep-well sequestration of carbon dioxide, Environ. Geosci. 10, 81-89. https://doi.org/10.1306/eg100202009
  32. Streit, J.E. and R.R. Hillis, 2004, Estimating fault stability and sustainable fluid pressures for underground storage of $CO_2$ in porous rock, Energy 29, 1445-1456. https://doi.org/10.1016/j.energy.2004.03.078
  33. Vidal-Gilbert, S., E. Tenthorey, D. Dewhurst, J. Ennis-King, P.V. Ruth and R. Hillis, 2010, Geomechanical analysis of the Naylor Field, Otway Basin, Australia: implications for $CO_2$ injection and storage, Int. J. Greenhouse Gas Control 4, 827-839. https://doi.org/10.1016/j.ijggc.2010.06.001
  34. Wiprut, D. and M.D. Zoback, 2002, Fault reactivation, leakage potential, and hydrocarbon column heights in the northern North Sea, In: A.G. Koestler and R. Hunsdale (eds.), Hydrocarbon seal quantification, NPF Special Publication 11, Elsevier, Amsterdam, pp. 203-219.
  35. Zoback, M.D. and H. Harjes, 1997, Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, J. Geophys. Res. 102, 18477-18491. https://doi.org/10.1029/96JB02814
  36. Zoback, M.D., C.A. Barton, M. Brudy, D.A. Castillo, T. Finkbeiner, B.R. Grollimund, D.B. Moos, P. Peska, C.D. Ward and D.J. Wiprut, 2003, Determination of stress orientation and magnitude in deep wells, Int. J. Rock Mech. Min. Sci. 40, 1049-1076. https://doi.org/10.1016/j.ijrmms.2003.07.001
  37. Zoback, M.D. and S.M. Gorelick, 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide, PNAS 109(26), 10164-10168. https://doi.org/10.1073/pnas.1202473109

Cited by

  1. A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration vol.18, pp.2, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.2.94
  2. Numerical Analysis for Fault Reactivation during Gas Hydrate Production vol.26, pp.2, 2016, https://doi.org/10.7474/TUS.2016.26.2.059