• Title/Summary/Keyword: Pore shape

Search Result 301, Processing Time 0.032 seconds

Development of bone scaffold using HA(Hydroxyapatite) nano powder (HA(Hydroxyapatite) 나노 입자를 이용한 bone scaffold의 개발)

  • Kim J.Y.;Lee S.J.;Lee J.W.;Kim Shin-Yoon;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.159-160
    • /
    • 2006
  • A novel approach to the manufacture of biocompatible ceramic scaffold for tissue engineering using micro-stereolithography system is introduced. Micro-stereolithography is a newly proposed technology that enables to make a 3D micro structure. The 3D micro structures made by this technology can have accurate and complex shape within a few micron error. Therefore, the application based on this technology can vary greatly in nano-bio fields. Recently, tissue-engineering techniques have been regarded as alternative candidate to treat patients with serious bone defects. So many techniques to design and fabricate 3D scaffolds have been developed. But the imperfection of scaffold such as random pore size and porosity causes a limitation in developing optimum scaffold. So scaffold development with controllable pore size and fully interconnected shape have been needed for a more progress in tissue engineering. In this paper, bone scaffold was developed by applying the micro-stereolithography to the mold technology. The scaffold material used was HA(Hydroxyapatite) nano powder. HA is a type of calcium phosphate ceramic with similar characteristic to human inorganic bone component. The bone scaffold made by HA is expected, in the near future, to be an efficient therapy for bone defect.

  • PDF

Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals (바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Breeding and Reproductive Studies on Korean Native Loach (Misgurnus anguillicaudatus) IV. Electron Microscopic Observation on Vitellogenesis and Maturation in Oocytes (한국산 미꾸리에 관한 육종.번식학적 연구 IV. 난모세포의 난황 형성 및 성숙에 관한 전자현미경적 관찰)

  • 윤종만;이종영;이경호;박인홍
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.3
    • /
    • pp.247-260
    • /
    • 1992
  • This study was carried out to investigate the histomorphological changes of ovaries obtained from 100 of 1-year-old female Korean loach(misgurnus anguillicaudatus). The light microscopic and ultrastructural changes ofooplasm and follicular membranes of oocytes, were observed by lightand transmission electron microscope during the reproductive cycle. All data were collected from November in 1991 to May in 1992. The results obtained in this study were as follows: The size of the nucleoli and number of the yolk granules increased as the oocytes grown. Yolk granules were loosely deposited in the oocytes as crystalline granules. Due to the presence of large early and late maturing oocytes, their ovaries were enlarged, transparent, granular and yellowish in color. The lattice was broken down at hydration, leaving the egg transparent. As the percentages of fish in LMO and RO stage increased from March to April, mean gonadosomatic index(GSI) values(18.49%) increased. Zona radiata change a squamous into cuboid shape in EMO stage. Processes from the granulosa cells and from the oocyte, microvilli grow and make contact with other in the pore canals of the zona radiata during vitellogenesis, but are withdrawn as the zona radiata becomes more compact and devoid of pore canals during oocyte maturation. Seasonal changes in the microscopic appearance of the ovaries were well correlated with those in both GSI and macroscopic appearance.

  • PDF

The Effect of PVA-Al(III) Complex on the Pore Formation and Grain Growth of UO$_2$ Sintered Pellet (PVA-Al(III) 착물이 UO$_2$ 소결체의 기공형성과 결정립성장에 미치는 영향(I))

  • 이신영;김형수;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.783-790
    • /
    • 1998
  • The characterization of the complexation reaction of PVA and Al(III) ion at different pH and the sint-ering behaviour of UO2 containing the PVA-Al(III) complexes were investigated. Compared with pure PVA powder the complexed PVA-Al(III) powder had compacter shape and lower decomposition temperature The major phase of PVA-Al(III) complex decomposed at 90$0^{\circ}C$ was $\alpha$-Al2O3 The PVA-Al(III) complex formed at pH 9 had the lowest relative viscosity the highest Al content of 36% and the smallest particle size of 19${\mu}{\textrm}{m}$ While the pure UO2 pellet appeared with bimodal one. The grain size of the pure UO2 pellet was 7${\mu}{\textrm}{m}$ but that of the PVA-Al(III) complex added UO2 pellet was increased up to 36${\mu}{\textrm}{m}$ The largest grain size was ob-tained when the PVA-Al(III) complex formed at pH9 was added and the PVA-Al(III) complex formed at pH 11 had the greatest effect on increasing pore size.

  • PDF

Stability Analysis and Reinforcement of Large Excavated Slope considering Precipitation Infiltration in Rainy Season (강우침투로 인한 대절취사면의 붕괴안정성검토 및 대책)

  • Chun, Byung-Sik;Choi, Hyun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.101-110
    • /
    • 2000
  • In case heavy rainfall is a key factor of slope failure, the failure zone is usually developed within the depth of 3~5m from the ground surface regardless of the location of the watertable. If rainfall is taken into consideration, it is general that the slope stability analysis is carried out under the assumption that the cut slope is saturated to the slope surface or the watertable elevates to a certain height so that ${\gamma}_{sat}$, the unit weight of saturated soil, is used. However, the analysis method mentioned above can't exactly simulate the variation of pore water pressure in the slope and yields different failure shape. The applicability of slope stability analysis method considering the distribution of pore water pressure within the slope with heavy rainfalls, was checked out after the stability analysis of a lage-scale cut slope in a highway construction site, where surface failure occurred with heavy rainfalls. An appropriate slope stabilization method is proposed on the base of the outcome of the analysis.

  • PDF

Variation of State Boundary Surface of Remolded Weathered Mudstone soil by spacing ratio (공간비에 의한 재성형 이암 풍화토의 상태경계면 변화)

  • Kim, Ki-Young;Jeon, Je-Sung;Lee, Jong-Wook;Kim, Je-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1095-1099
    • /
    • 2008
  • Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.

  • PDF

Redescription of a poorly known spider, Pholcus kwangkyosanensis Kim & Park, 2009 (Araneae: Pholcidae) from Korea

  • Chang Moon Jang;Seung Tae Kim
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.172-175
    • /
    • 2024
  • A poorly known spider, Pholcus kwangkyosanensis Kim & Park, 2009 is redescribed with diagnosis, detailed descriptions, and taxonomic photographs of diagnostic characters. P. kwangkyosanensis is similar in appearance to P. kwanaksanensis Namkung & Kim, 1990, in terms of the shape of the genital organ and body, but it can be easily distinguished from the latter by the shape of the cheliceral apophysis, uncus, and procursus in males, as well as the shape of the epigynum and pore plates in females. The specimens of this spider were collected at the type locality (Mt. Gwanggyosan, Suwon), specifically under the bridge on a local stream in an agricultural landscape surrounded by rice fields, upland fields, or horticultural greenhouses.

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.