• Title/Summary/Keyword: Pore forming agent

Search Result 42, Processing Time 0.027 seconds

Performance and Safety of EDLC of PVdF-PVP Mixed Binder (PVdF-PVP 복합결합제를 이용한 EDLC의 성능과 안정성)

  • 김경민;오호성;정세일;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.319-324
    • /
    • 2001
  • High surface area and high pore volume activated carbon was prepared by KOH activation of rice hull. The electrodes were fabricated by compounding the commercial and rice hull activated carbons with PVdF and PVdF-PVP mixed binders without addition of conductivity improver. The electrodes fabricated with rice hull activated carbon and PVdF-PVP mixed binders showed the best performance because the PVP played as a pore-forming agent. The electrode exhibited excellent electrochemical characteristics having 7.9 W.h/kg of energy density, 33.5 F/g of speific capacitance, 0.7 $\Omega$ of ESR and good efficiency of self-discharge compared with that fabricated with commercial activated carbons.

  • PDF

Characterization of Phase Inversion Membrane of Sulfonated Polyetherimide (Sulfonated Polyetherimide Membrane의 특성)

  • 김완주;최남석;최중구;김인철;김종호;탁태문
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Sulfonated polyetherimide having anionic charge and better hydrophilicity than polyetherimide was prepared by reacting polyetherimide with chlorosulfonic acid. To prepare casting solution, from which the membrane having good performance can produce. Polyvinylpyrrolidone as a pore forming agent and volatile weak solvent such as dichloromethane to foml the dense skin layer were added to the sulfonated polyetherimide / N -methyl-2-pyrrolidone solution. Membrane fabricated sulfonated PEl showed better fouling resistance to the protein than those fabricated PEL because of its hydrophilicity. Solute having negative charge was removed effectively with membrane fabricated from the sulfonated PEl because of its the same electron charge.

  • PDF

Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis (반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화)

  • Lee, Han-Baek;Seo, Chee-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

Preparation and Electrical Conductivity of Scandia Stabilized Zirconia by using Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 스칸디아 안정화 지르니코니아의 제조와 전기 전도도)

  • Choi, Young-Hoon;Peck, Dong-Hyun;Park, Young-Chul;Lim, Kyoung-Tae;Suhr, Dong-Soo;Wackerl, J.;Markus, T.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.690-695
    • /
    • 2007
  • Scandia stabilized zirconia (ScSZ) is adapted for electrolyte material of solid oxide fuel cell (SOFC) because of its high ionic conductivity and chemical stability. ScMnSZ1 powder having a composition of $((ZrO_2)_{0.89}(Sc_2O_3)_{0.1}(MnO_2)_{0.01})$ is synthesized by ultrasonic spray pyrolysis (USP) method. Porous ScMnSZ1 powder is obtained by using a pore forming agent. Microstructure and morphology, particle size distribution of porous powder synthesized with 3wt% pore forming agent are investigated. Sintered ScMnSZ1 sample with ground fine powder are also investigated their microstructure and electrical conductivity. The electrical conductivity of sintered ScMnSZ1 samples with ground fine powder was 0.082 S/cm, 0.127 S/cm and 0.249 S/cm at $750^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$, respectively.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

Fabrication of Continuously Porous Alumina Bodies by Multi-Extrusion Process and their In-vitro and In-vivo Study for Biocompatibility (다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험)

  • 강인철;조순희;송호연;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.560-566
    • /
    • 2004
  • To fabricate the continuously porous alumina bodies by multi-extrusion process, carbon powder and ethylene vinyl acetate were used as a pore forming agent and a binder, respectively. As the change of extrusion pass number, reduction ratio as well as the volume fraction of core and tube, the porous alumina bodies having various kind of pore size and porosity could be obtained. The porous bodies showed continuous pore shape, high specific surface as well as high bending strength, which were compared with those of commercial alumina bodies. In-vitro study was carried out using MG-63 osteoblast cells to investigate of their biocompatibility. As a result, the cells grew well on top and bottom as well as inside surface of pore. From the result of in-vivo study of 3-dimensional porous alumina bodies using rats, it was confirmed that any inflammatory response was not found in the subcutaneous tissue around porous body. Also the porous bodies removed from the rats were fully covered with well-developed fibrous tissues and showed the formation of new capillary blood vessels.

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

Fabrication of Cordierite Honeycomb from Fly Ash

  • Kim, Sung-Jin;Park, Sung-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1009-1010
    • /
    • 2006
  • In this study, we attempt to synthesize the cordierite from the reaction of fly-ash, alumina, silicon dioxide, and magnesia powders. For the purpose of air purification, the honeycomb filter with porous cordierite was fabricated from the combination of synthetic cordierite and pore forming agent. Fabricated porous cordierite honeycomb was prepared with high porosity (58%), and good compressive strength (69MPa).

  • PDF

Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder

  • Youn, Min-Ho;Paul, Rajat Kanti;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.475-476
    • /
    • 2006
  • Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having $150-180\;{\mu}m$ were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of $Ca^{2+}$ ion was observed in the sample sintered at $1000^{\circ}C$.

  • PDF

Fabrication of Porous W by Freeze-Drying Process of Camphene Slurries with Spherical PMMA and WO3 Powders (구형 PMMA와 WO3 분말이 혼합된 Camphene 슬러리의 동결건조에 의한 W 다공체 제조)

  • Lee, Han-Eol;Jeon, Ki Cheol;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.602-606
    • /
    • 2015
  • Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of $WO_3$ and spherical PMMA of 20 vol% were frozen at $-25^{\circ}C$ and dried for the sublimation of the camphene. The green bodies were heat-treated at $400^{\circ}C$ for 2 h to decompose the PMMA; then, sintering was carried out at $1200^{\circ}C$ in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about $400^{\circ}C$, and $WO_3$ was reduced to metallic W at $800^{\circ}C$ without any reaction phases. The sintered bodies with $WO_3$-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.