• Title/Summary/Keyword: Pore formation

Search Result 564, Processing Time 0.022 seconds

Crystal growth of nanosized α-Fe2O3 particles in frit (Frit에서의 나노사이즈 α-Fe2O3 입자의 결정 성장)

  • Hiroaki-Katsuki, Hiroaki-Katsuki;Choi, Eun-Kyoung;Lee, Won-Jun;Moon, Won-Jin;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.69-73
    • /
    • 2018
  • Crystal growth of ${\alpha}-Fe_2O_3$ nanosized particles of 80~90 nm in size, which were hydrothermally prepared from 0.03 M $FeCl_3$ solution at $100^{\circ}C$, was investigated in Pb-containing and Pb-free frit. By heating ${\alpha}-Fe_2O_3$ nanosized particles in two frits at $800^{\circ}C$, the average diameter of particles in frits was increased to 200~210 nm and 150~160 nm, respectively, and the crystal growth due to the aggregation and sintering of several ${\alpha}-Fe_2O_3$ particles was observed. Formation ratios of larger particles over 100 nm in diameter were 54 % in Pb-free frit and 85 % in Pb-containing frit. After heating ${\alpha}-Fe_2O_3$ particles in frits at $800^{\circ}C$, 7~9 nm in average diameter of pores were formed in particles. Theses pores were derived from the porous structure of original ${\alpha}-Fe_2O_3$ particles and confined in particles during sintering.

Effect of Fluoride and Laser on Artificial Caries-like Lesion Formation in Bovine Enamel (불소 및 레이저가 우치법랑질의 인공우식병소에 미치는 영향)

  • Kim, Jae-Gon;Baik, Byeong-Ju;Ju, Hoon;Yun, Hyun-Du
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.3
    • /
    • pp.660-677
    • /
    • 1997
  • The purpose of this study was to examine the morphological characteristics and combined effects of fluoride application and laser irradiation on artificial caries-like lesion formation in bovine enamel. Enamel specimens were divided into five experiment group and placed in no-treatment(group C), APF application alone(group F), laser irradiation alone(group L), APF application before laser irradiation (group FL), and APF application after laser irradiation(group LF) on artificial caries-like lesion. Sound enamel was used as a control group. The ultrastructural changes and physical effects of the fluorided and lased enamel has been investigated by using SEM, enamel solubility and microhardness test as well as distributions of calcium, phosphorus and fluoride in internal enamel by using EPMA. The following results were obtained. 1. In the all experiment groups, the amounts of dissolved calcium of enamel surfaces significantly decreased according to increasing exposure time of acid solution than control group(P<0.001). Group L showed higher than that group FL and LF in 30 and 60min(P<0.05). 2. The microhardness values of enamel surface in the control group was highest than that in the other experiment groups. Group F, L, FL and LF were significantly increased than group C(P<0.001). The enamel surface treated with APF produced deposites of numerous small globules and lased enamel showed a cracker-like appearance with microcrack and small pore. Numerous deposits were infiltrated in the fissured portion of enamel treated with APF after laser irradiation. 4. In the case of APF application alone, the elevation of the fluoride profile can be seen within $5{\mu}m$ of the outermost layer and a similar profile observed in the specimen treated with APF before laser irradiation. However, the specimen treated with APF after laser Irradiation showed a large elevation within $10{\mu}m$ of the outermost layer of the enamel. 5. The higher Ca/P ratios were observed in $10{\mu}m$ depth of lased and fluorided enamel when compared to the sound and carious enamel. The fluoride content decreased rapidly with distance from enamel surface, in the group F, fluoride concentration was significantly higher than that in the group C, L, FL, LF and control group according to increasing enamel depth (P<0.05).

  • PDF

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing (무전해 니켈-인 도금법을 이용하여 도금된 탄소 섬유의 열처리 과정에서 나타나는 다공성 구조 생성 메커니즘 분석)

  • Ham, Seung Woo;Sim, Jong Ki;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.

Investigation of Degradation Mechanism of High Alumina Refractory in a Coal Gasifier (석탄 가스화기에서의 고알루미나 내화물의 손상 기구 규명)

  • Kim, Yuna;Lee, Jae Goo;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.638-645
    • /
    • 2009
  • High alumina refractory used in a coal gasifier was analyzed and the degradation mechanism by molten slag was investigated. The depth of refractory severely damaged by slag varied between 12~40 mm, including the adhered slag layer. The sample also showed the cracks formed in parallel to the slag/refractory interface. The degree of degradation varied with the micro-structures in the refractory. Fused alumina grains showed the uneven boundary and pore formation just along the edges, while the tablet alumina showed the slag penetrated between sintered alumina around which the formation of Al-Fe phase was observed. Calcium aluminate cements were not observed at the high temperature zone near the slag/refractory interface, probably due to dissolution into molten slag. Around large grains of alumina, rod shape alumina, which appeared to be recrystallized during cooling, were observed, and large pores were also formed around those grains. Therefore, in high alumina refractories, hot molten slag dissolves the bonding phase and rod-shape alumina phase is recrystallized upon cooling. During this process, cracks are developed due to structural change, and the degradation occurs by physical causes such as structural spalling.

Investigation on Formation of Nanotube Titanium Oxide Film by Anodizing on Titanium in NaF Electrolytes (NaF 전해용액을 이용한 양극산화에 의한 타이타늄 표면의 나노튜브구조의 형성에 관한 연구)

  • Lim, Hyun-Pil;Park, Nam-Soon;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • The aim of this study is to find the condition of forming the favorable nanotubes by anodizing with NaF and $H_3PO_4$. Machined Ti discs were used for anode, and Platinum net was used for cathode. For electrolyte, $H_3PO_4$ and NaF solution were mixed. We controlled voltage, electrolyte concentration, anodizing time and formed nanotubes on Ti discs. After that, these were washed with distilled water for 24 hours and dried in the $40^{\circ}C$ oven for 24 hours. The surface structure of specimens were analyzed. The results were as follows : At 0.5 wt % NaF, according as increasing voltage and anodizing time, early state of nucleating pores were generated. At 1.0 wt % NaF, 20 V, 20 & 25 min, well-formed nanotubes were observed. At 1.0 wt % NaF, 30 V, structure of nanotube became bigger and interconnected. At 2.0 wt % NaF, no nanotubes were formed and it was unrelated with voltage and time. At 1.0 wt % NaF, 20 V, 20 - 25 min, well-ordered nanotubes were generated on Ti discs. For the formation of favorable nanotubes, it is considered that proper parameters such as electrolyte concentration, voltage, anodizing time are necessary according to the kind of electrolytes.

Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane (내염소성 중공사형 역삼투막(Loose RO)의 제조 및 특성)

  • Kim, Se-Jong;Woo, Seung-Moon;Hwang, Hae-Yong;Koh, Hyung-Chul;Ha, Seong-Yong;Choi, Ho-Sang;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.304-311
    • /
    • 2010
  • In this study, loose RO hollow fiber membranes using CTA polymer were prepared by phase inversion method and their water purification properties were tested. 1,4-dioxane and LiCl was used as a skin layer formation agent and pore formation agent, respectively. Water flux, salt rejection, chlorine resistance, MWCO and membrane morphology were evaluated as a function of the dope composition. When the membrane prepared using the dope solution of CTA/NMP/1,4-dioxane = 18/72/10 (wt%) with air gap of 30 cm, it shows improved RO performance such as $20.5L/m^2hr$ of water flux, 60% of NaCl rejection, 10,000 ppm/hr of chlorine-resistance and around 5,000 Da of MWCO.

Effect of SiO$_2/Al_2O_3$ Ratio of HZSM-5 Catalyst on the Synthesis of Methyl tert-butylether (Methyl tert-Butylether 合成에 미치는 HZSM-5 觸媒의 SiO$_2/Al_2O_3$ 比의 영향)

  • Geon-Joong Kim;Wha-Seung Ahn;Byung-Rin Cho;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.135-142
    • /
    • 1989
  • Methyl tert-butyl ether(MTBE) was synthesized from vapor phase reaction of methanol with iso-butylene over HZSM-5 catalysts, and effects of SiO$_2/Al_2O_3$ ratio in the HZSM-5 catalysts and reaction conditions on products distribution have been examined. Acid strength and acid type of each catalyst with different SiO$_2/Al_2O_3$ ratio were measured using pyridine adsorption followed by temperature programmed desorption(TPD) and IR analysis. Reactants and products adsorption characteristics on different acid sites have also been examined. As the SiO$_2/Al_2O_3$ ratio of HZSM-5 catalyst was increased, selectivity to MTBE was improved as a result of decrease in dimethylether(DME) formation at the strong acid sites. Conversion and selectivity to MTBE were also greatly enhanced as $i-C_4H_8/CH_3OH$ reactant ratio was increased, and overall about 80$^{\circ}$C was adequate for the MTBE synthesis. The properties of deposited coke on spent catalysts were examined by TG, DTA and IR spectrum analysis, indicating the amount of the coke deposit in the order of HY > H-Mordenite > HZSM-5. Even if the coke deposited on H-Mordenite was little more in amount than to that on HZSM-5, the former deactivated quickly due to its non-interconnected channel structure. For HY, owing to its lange pore size, significant $i-C_4H_8$ polymerization was occured, and rapid deactivation and severe coke formation has resulted within few hours.

  • PDF

Effect of Trans-Membrane Pressure on Reversible and Irreversible Fouling Formation of Ceramic Membrane (막간차압이 세라믹막의 가역막오염과 비가역막오염 형성에 미치는 영향)

  • Lee, Heewon;An, Kwangho;Choi, Juneseok;Kim, Seogku;Oh, Hyunje
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.637-643
    • /
    • 2012
  • This study was carried out to investigate how reversible and irreversible fouling were distributed in the filtration using ceramic membrane of 300 kDa pore size for secondary effluent of wastewater. It was performed by calculating fouling as numerical method for diverse TMPs and measured F-EEM and SEC for raw water, treated water and backwashed water. Water quality was also checked to know whether treated water quality was stable or not. The results showed that reversible fouling formation was increased when lower TMP was applied and it is caused by protein like organic matters having higher molecular weights. The secondary wastewater effluent had diverse molecular weight materials, especially contaminants lower than 0.5 kDa and bigger than 12 kDa. Decreasing TMP induced contaminants above 12 kDa and below 1 kDa to become reversible fouling.

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding (흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구)

  • Lee, Tae Ho;Kang, Saetbyeol;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.611-619
    • /
    • 2019
  • This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.