• Title/Summary/Keyword: Pore distributions

Search Result 82, Processing Time 0.027 seconds

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

Preparation and Application of ACFs Derived from the Petroleum Pitch and the Organometallic Compounds

  • Hong, Ik-Pyo;Ha, Baik-Hyon
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2002
  • Activated carbon fibers were prepared from the petroleum isotropic pitch and organometallic compounds. The metalsvwere dispersed uniformly in the ACFs. The specific surface area and pore size distributions of metal containing ACFsvwere measured. The mesopores of ACFs were developed by Co, Ni, and Mn metals addition and the catalytic reactivityvof ACFs'SOx removal was increased by adding Ni and Pd metals. It was found that the mesopores did not work forvthe improvement of catalytic reactivity of ACFs' SOx removal with the blank experiment using the metal removedvACFs.

  • PDF

Preparation of Porous Glass-Ceramics by the Sintering (소결법에 의한 다공질 결정화유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1218-1230
    • /
    • 1994
  • In manufacturing process of porous glass-ceramics by the filler method, the sintering behaviour of crystallizable glass powder mixed with various salts was studied and also the effects of precipitated crystal phases on the properties of porous glass-ceramics were investigated. Fine-grained crystallizable glass powder was homogeneously mixed with various slat having grain size 100~200 ${\mu}{\textrm}{m}$ and sintered for densification. After washing out the inorganic salt with distilled water, the porous sintered body was heat treated additionly for crystallization. The MgO-Al2O3-SiO2 base glass was used as crystallizable glass powder and the water soluble salts such as K2SO4 and MgSO4 were used as filler. When K2SO4 was used, leucite crystal phase was formed as a result of the ion exchange and porous glass-ceramics which exhibit high temperature resistance and high thermal expansion coefficient of 17$\times$10-6/$^{\circ}C$ could be obtained. On the contrary, when MgSO4 was used, only slight ion exchange is observed and $\mu$-cordierite and $\alpha$-cordierite crystal phases were formed and porous glass-ceramics which exhibit low thermal expansion coefficient schedule were determined with the results of DTA curves, thermal shrinkage curves and XRD patterns analysis. From DTA curves and thermal shrinkage curves, it was found that the sintering densification have been completed at the temperature range of exothermic peak for crystallization. The pore size distributions and pore diameters were measured by mercury porosimeter. The pore diameter of porous glass-ceramics was 10~15 ${\mu}{\textrm}{m}$ when 100~200${\mu}{\textrm}{m}$ grain size of K2SO4 was used and it was 25~30 ${\mu}{\textrm}{m}$ when the same grain size of MgSO4 was used. The porous glass-ceramics K2SO4 used shows bimodal pore size distribution and its porous skeleton structure was ascertained by SEM observation.

  • PDF

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

Adsorption and Leaching of cis and frans-Permethrin in the Soil (토양 중 cis 및 trans-Permethrin의 흡착 및 침출)

  • Sam Edward Feagley
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.379-386
    • /
    • 1995
  • Permethrin [3-phenox yben zyl(1RS)-cis,tans-3-(2,2-dichloroviny1)-2,2- dimethylcyclopropane carboxylate] insecticides were selected to study adsorption and leaching potentials related to pollution on Commerce silty clay loam soil near Baton Rouge, Louisiana, USA. GLC-ECD chromatogram of permethrin included 32.5 % of cis-pemehin and 67.4 % of trans-permethrin. Extraction efficiencies of is and trmu-pemetun were 92.5 % and 92.3 % in fortified water, respectively and 85.9 % and 88.8 % in fortified soil, respectively. At a 1:10 moi]/water ratio,the Koc values for sis and fan isomers of permethrin were 938 and 877, respectively. Leaching of permethrin was evaluated in soil columns$(5.4 cm i.d. \times 26 cm length)$. Total recoveries of the permethrin applied to the soil column were $84.5\pm3.1%$. When the soil columns were leached with three pore volumes of water, the distributions of cis-permethrin leached were 6.10 % and 0.07 % of amount applied in the untreated zone soil and leachate water, respectively Trans-pemethrin distributions were 5.20 % in the untreated zone soil and 0.05 % in leachate water. Cis and trans-pemethrin was strongly adsorbed to soil. The results of the study showed the strong relationship between adsorption and leaching. Cis and trans-permethrin to be leached into the groundwater in soils with shallow aquifers were suggested a low leaching potential.

  • PDF

Repair Cost Analysis for RC Structure Exposed to Carbonation Considering Log and Normal Distributions of Life Time (탄산화에 노출된 철근콘크리트 구조물의 로그 및 정규 수명분포를 고려한 보수비용 해석)

  • Woo, Sang-In;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.153-159
    • /
    • 2018
  • Many researches have been carried out on carbonation, a representative deterioration in underground structure. The carbonation of RC (Reinforced Concrete) structure can cause steel corrosion through pH drop in concrete pore water. However extension of service life in RC structures can be obtained through simple surface protection. Unlike the conventional deterministic maintenance technique, probabilistic technique can consider a variation of service life but it deals with only normal distributions. In the work, life time-probability distributions considering not only normal but also log distributions are induced, and repair cost estimation technique is proposed based on the induced model. The proposed technique can evaluate the repair cost through probabilistic manner regardless of normal or log distribution from initial service life and extended service life with repair. When the extended service life through repair has log distribution, repair cost is effectively reduced. The more reasonable maintenance strategy can be set up though actual determination of life-probability distribution based on long term tests and field investigations.

Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent (함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상)

  • Kang, Suk-Pyo;Kim, Jung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.125-132
    • /
    • 2006
  • Recently, surface finishing and protection materials were developed to restore performance of the deteriorated concrete and inhibiting corrosion of the reinforcing-bar. For this purpose, surface protection agent as well as coatings are used. Coatings have the advantage of low Permeability of $CO_2,\;SO_2$ and water. However, for coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, those have a problem with adhesion. On the other hand, surface protection agent penetrates into pore structure in concrete through capillary and cm make a dense micro structure in concrete as a result of filling effect. Furthermore, the chemical reaction between silicate from surface protection agent and cement hydrates can also make a additional hydration product which is ideally compatible with concrete body. The aim of this study is to examine the effect of penetrative surface protection agent(SPA) by evaluating several concrete durability characteristics. The results show that the concrete penetrated surface protection agent exhibited higher durability characteristics for instance, carbonation velocity coefficient, resistance to chemical attack and chloride ion penetration than the plain concrete. These results due to formation of a discontinuous macro-pore system which inhibits deterioration factors of concrete by changed the pore structure(porosity and pore size distributions) of the concrete penetrated surface protection agent.

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석))

  • 오진원;백성민;금영탁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2004
  • When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

The Selective Leaching of Al-Ni Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법에 의하여 제조된 Al-Ni 합금 나노분말의 선택적 침출)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Chang, Han-Kwon;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.