DOI QR코드

DOI QR Code

Repair Cost Analysis for RC Structure Exposed to Carbonation Considering Log and Normal Distributions of Life Time

탄산화에 노출된 철근콘크리트 구조물의 로그 및 정규 수명분포를 고려한 보수비용 해석

  • Woo, Sang-In (Department of Civil Engineering, Hannam University) ;
  • Kwon, Seung-Jun (Department of Civil Engineering, Hannam University)
  • 우상인 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2018.08.01
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

Many researches have been carried out on carbonation, a representative deterioration in underground structure. The carbonation of RC (Reinforced Concrete) structure can cause steel corrosion through pH drop in concrete pore water. However extension of service life in RC structures can be obtained through simple surface protection. Unlike the conventional deterministic maintenance technique, probabilistic technique can consider a variation of service life but it deals with only normal distributions. In the work, life time-probability distributions considering not only normal but also log distributions are induced, and repair cost estimation technique is proposed based on the induced model. The proposed technique can evaluate the repair cost through probabilistic manner regardless of normal or log distribution from initial service life and extended service life with repair. When the extended service life through repair has log distribution, repair cost is effectively reduced. The more reasonable maintenance strategy can be set up though actual determination of life-probability distribution based on long term tests and field investigations.

지하구조물에 주로 발생하는 탄산화는 콘크리트 내부의 공극수의 pH감소에 따라 부식을 유발할 수 있으므로 많은 연구가 진행되고 있다. 그러나 이산화탄소로부터 표면을 보호하는 간단한 표면 보수방법을 통하여 구조물의 내구수명의 연장이 가능하다. 기존의 결정론적 유지관리 기법과는 다르게, 확률론적 유지관리 기법에서는 내구수명의 변동성이 고려될 수 있으나 정규분포만 다루고 있다. 본 연구에서는 정규분포 이외에 로그분포를 고려할 수 있는 수명-확률분포를 유도하였으며, 이를 기초로 다양한 수명-확률분포 함수를 고려한 보수비 산정기법을 제안하였다. 제안된 기법은 초기의 내구수명 분포 또는 보수재를 통하여 연장된 내구수명 분포가 정규 또는 로그분포를 가질 경우 목표내구수명의 연장에 따라 확률론적 기법을 통하여 보수비를 평가할 수 있다. 보수를 통한 내구수명이 로그분포를 가질 경우 효과적으로 보수비를 감소시킬 수 있으며, 장기 실험 또는 실태조사를 통하여 내구수명 분포가 정의될 수 있다면 더욱 합리적인 유지관리 계획을 수립할 수 있을 것으로 판단된다.

Keywords

References

  1. DuraCrete. (2000). Final Technical Report-Probabilistic Performance Based Durability Design of Concrete Structures Document BE95-1347/R17, European Brite-Euram III, CUR, Netherlands.
  2. European Committee for Standardization (Comité EuropEen de Normalisation, CEN). (2000), Eurocode 1: Basis of Design and Actions on Structures, EN-1991(Comite Europeen de Normalisation, CEN), Brussels, Belgium, 2000.
  3. Gjorv, O.E. (1994). Steel corrosion in concrete structures exposed to Norwegian marine environment, Concrete International, 16(4), 35-39.
  4. JSCE. (2007), Standard Specification for Concrete Structures-Materials and Construction; JSCE-Guidelines for Concrete 16, Japan Society of Civil Engineering (JSCE): Tokyo, Japan.
  5. Jung, S.H., Yang, H.M., Yang, K.H., Kwon, S.J. (2017). Maintenance for repaired RC column exposed to chloride attack based on probability distribution of service life, International Journal of Concrete Structures and Materials, 2018, 1-9.
  6. Kim, S.J., Mun, J.M., Lee, H.S., Kwon, S.J. (2014). $CO_{2}$ emission and storage evaluation of RC underground structure under carbonation considering service life and mix conditions with fly ash, Journal of the Korea Contents Association, 14(12), 1000-1009 [in Korean].
  7. Kwon, S.J. (2017a). Simulation on optimum repairing number of carbonated RC structure based on probabilistic approach, Journal of the Korean Recycled Construction Resources Institute, 5(3), 230-238 [in Korean].
  8. Kwon, S.J. (2017b). Probability-based $LCCO_{2}$ Evaluation for undergroung structture with repairing timings exposed to carbonation, Journal of the Korean Recycled Construction Resources Institute, 5(3), 239-246 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.3.239
  9. Kwon, S.J., Lee, B.J., Kim, Y.Y. (2014). Concrete mix design for service life of RC structures under carbonation using genetic algorithm, Advances in Materials Science and Engineering, 2014, 1-13.
  10. Kwon, S.J., Na, U.J. (2011). Prediction of durability for RC columns with crack and joint under carbonation based on probabilistic approach, International Journal of Concrete Structures and Materials, 5(1), 11-18. https://doi.org/10.4334/IJCSM.2011.5.1.011
  11. Lee, H.S., Kwon, S.J. (2018). Probabilistic analysis of repairing cost considering random variables of durability design parameters for chloride attack, Journal of the Korean Institute for Structural Maintanence and Inspection, 22(1), 32-39 [in Korean].
  12. Mulubrhan, F., Mokhtar, A.A., Muhammad, M. (2014). Integrating reliability analysis in life cycle cost estimation of heat exchanger and pump, Advanced Materials Research, 903, 408-413. https://doi.org/10.4028/www.scientific.net/AMR.903.408
  13. Na, U.J., Kwon, S.J., Chaudhuri, S.R., Shinozuka, M. (2012). Stochastic model for service life prediction of RC structures exposed to carbonation using random field simulation, KSCE Journal of Civil Engineering, 16(1), 133-143. https://doi.org/10.1007/s12205-012-1248-7
  14. Nasir, M., Chong, H.Y., Osman, S. (2015). Probabilistic life cycle cost model for repairable system, IOP Conference series: Materials Science and Engineering, 78, 1-8.
  15. Pack, S.W., Jung, M.S., Song, H.W., Kim, S.H., Ann, K.Y. (2010). Prediction of time dependent chloride transport in concrete structures exposed to a marine environment, Cement Concrete Research, 40(2), 302-312. https://doi.org/10.1016/j.cemconres.2009.09.023
  16. Papadakis, V.G., Vayenas, C.G., Fardis, M.N. (1991). Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, 88(2), 186-196.
  17. Rahman, S., Vanier, D.J. (2004). "Life cycle cost analysis as a decision support tool for managing municipal infrastructure," Proceedings of the CIB triennial, CIB 2004 Triennial Congress, Ottawa, Canada, 2(1), 1-11.
  18. Salem, O., Abourizk, S., Ariaratnam, S. (2003). Risk-based life-cycle costing of infrastructure rehabilitation and construction alternatives, Journal of Infrastructure Systems, 9(1), 6-15. https://doi.org/10.1061/(ASCE)1076-0342(2003)9:1(6)
  19. Song, H.W., Kwon, S.J. (2007). Permeability characteristics of carbonated concrete considering capillary pore structure, Cement and Concrete Research, 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
  20. Stewart, M.G., Mullard, J.A. (2007). Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures, Engineering Structures, 29(7), 1457-1464. https://doi.org/10.1016/j.engstruct.2006.09.004
  21. TOTAL-LCC. (2010). Technical Manual ver.1.1.