• Title/Summary/Keyword: Pore aperture

Search Result 11, Processing Time 0.021 seconds

Molecular cloning and sequence and 3D models analysis of the Sec61α subunit of protein translocation complex from Penicillium ochrochloron

  • Azad, Abul Kalam;Jahan, Md. Asraful;Hasan, Md. Mahbub;Ishikawa, Takahiro;Sawa, Yoshihiro;Shibata, Hitoshi
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.719-724
    • /
    • 2011
  • The $Sec61{\alpha}$ subunit is the core subunit of the protein conducting channel which is required for protein translocation in eukaryotes and prokaryotes. In this study, we cloned a $Sec61{\alpha}$ subunit from Penicillium ochrochloron ($PoSec61{\alpha}$). Sequence and 3D structural model analysis showed that $PoSec61{\alpha}$ conserved the typical characteristics of eukaryotic and prokaryotic $Sec61{\alpha}$ subunit homologues. The pore ring known as the constriction point of the channel is formed by seven hydrophobic amino acids. Two methionine residues from transmembrane ${\alpha}$-helice 7 (TM7) contribute to the pore ring formation and projected notably to the pore area and narrowed the pore compared with the superposed residues at the corresponding positions in the crystal structures or the 3D models of the $Sec61{\alpha}$ subunit homologues in archaea or other eukaryotes, respectively. Results reported herein indicate that the pore ring residues differ among $Sec61{\alpha}$ subunit homologues and two hydrophobic residues in the TM7 contribute to the pore ring formation.

Studies on the Stomatal Movement and Related Environmental Factors to Stomate in the Wheat I. Measurement of the Stomatal Aperture and Diurnal Movement of the Stomata in Wheat 1.Measurement of the Stonatal Aperture and Diurnal Movement of the Stomanta on Wheat (소맥엽신의 기공운동과 기공의 환경변이에 관한 연구 제1보 소맥엽신의 기공개도 측정법 및 기공개도의 일변화)

  • 남윤일;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.2
    • /
    • pp.130-136
    • /
    • 1982
  • Experiments were conducted to establish a measuring method of the stomatal aperture in the leaves of the wheat plant, and to find the diurnal movements of the stomate in leaves of different position and tillers. The measurement methods used were the infiltration and the microrelief impression methods. The aperture of the stomate in the infiltration method was expressed in terms of the solutions pent ration into the leaf and this was refered to as the infiltration score. A score I represents injection with 10% iso-butyl alcohol+90% ethylene glycol solution and a score 7 represents injection with 70% iso-butyl alcohol +30% ethlene glycol solution. A linear relationship was obtained between the infiltration score and average pore width in a large number. of the stomata observed in the leaves of the adaxial and abaxial epidermis. The aperature of the stomate of flag and the 1st leaf were exhibited diurnal change with the maximum aperture at 10 A.M. but that of 2nd leaf reached maximum aperture 2 hours later than upper two leaves. After reaching the maximum aperture the stomata gradually closed and then completely closed at 6 P.M. The aperture of the stomate in the adaxial epidermis and the base part of the leaf were larger than those in the abaxial and top part of the leaf, and aperture of the stomate in the leaves of the main stem was larger than those on the tillers.

  • PDF

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Comparative study on the external micro-morphology of 3 kinds of minute pollen and spore Herbs (Pini Pollen, Typhae Pollen, Lygodii Spora) utilizing scanning electron microscope (주사전자현미경을 이용한 3종 화분포자류(花粉胞子類) 한약재(송화분(松花粉), 포황(蒲黃), 해금사(海金沙))의 미세형태 비교연구)

  • Kim, Young-Sik;Song, Jun-Ho;Choi, Goya;Lee, Guemsan;Ju, Young-Sung
    • The Korea Journal of Herbology
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2020
  • Objectives : We tried to establish standards for genuine by discriminating 3 kinds of pollen and spore herbs that are highly to be mixed with each other. Using an scanning electron microscope, we prepare a standard for discriminating external morphological characters of minute herbs, thereby contributing to the stable supply of genuine herbal medicines. Methods : Standard samples were confirmed by literature review on external morphological characteristics of original plants and herbal medicines, and collection and identification of original plants. The herbal medicines on the market were purchased and classified with using naked eye observation and magnifier. Finally, micromorphological identifications were conducted using an scanning electron microscope. Results : 1. Pini Pollen was clearly distinguished by its relatively medium size and a pollen grain with two swollen reticulate sacci at both ends. The verrucate ornamentation on the exine surface of the corpus and a sunken leptoma germ pore may be used as a discrimination criteria. 2. Typhae Pollen was distinguished by its relatively small size and a saccus on the end of a pollen grain. Reticulate ornamentation of exine surface of the corpus, and a slightly clear ulcerate germ pore can be used as a discrimination criteria. 3. Lygodii Spora was distinguished by its relatively large triangular-ovate shape and trichotomous fissure. Verrucate-tuberculate ornamentation of exine surface and trilete aperture could be used as a discrimination criteria. Conclusion : These results indicate that the use of electron microscopy is very effective for discriminating the external morphology of minute herbal medicines.

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

Preparation and Gas Permeability of ZIF-7 Membranes Prepared via Two-step Crystallization Technique

  • Li, Fang;Li, Qiming;Bao, Xinxia;Gui, Jianzhou;Yu, Xiaofei
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.340-346
    • /
    • 2014
  • Continuous and dense ZIF-7 membranes were successfully synthesized on ${\alpha}-Al_2O_3$ porous substrate via two-step crystallization technique. ZIF-7 seeding layer was first deposited on porous ${\alpha}-Al_2O_3$ substrate by in-situ low temperature crystallization, and then ZIF-7 membrane layer can be grown through the secondary high-temperature crystallization. Two synthesis solutions with different concentration were used to prepare ZIF-7 seeding layer and membrane layer on porous ${\alpha}-Al_2O_3$ substrate, respectively. As a result, a continuous and defect-free ZIF-7 membrane layer can be prepared on porous ${\alpha}-Al_2O_3$ substrate, as confirmed by scanning electron microscope. XRD characterization shows that the resulting membrane layer is composed of pure ZIF-7 phase without any impurity. A single gas permeation test of $H_2$, $O_2$, $CH_4$ or $CO_2$ was conducted based on our prepared ZIF-7 membrane. The ZIF-7 membrane exhibited excellent H2 molecular sieving properties due to its suitable pore aperture and defect-free membrane layer.

Utilization of Induced Polarization and Electrical Resistivity for Identifying Rock Condition (유도분극 전하 충전성과 전기비저항을 활용한 암반 상태 파악 가능성 연구)

  • Park, Jinho;Ryu, Jinwoo;Jung, Jeehee;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.493-502
    • /
    • 2016
  • This study examines how rock condition affects the variation of the chargeability and electrical resistivity of the rock. In the theoretical study, the relationship correlating chargeability with the variables affecting it is derived. A parametric study utilizing the derived relationship reveals that the size of narrow pores ($r_1$) is the most influential factor on chargeability, and the salinity of pore water ($C_0$) is the second. In the laboratory experiments, small scale rock fracturing zone is modelled using sand stone. Chargeability and resistivity are measured by changing the size of the joint aperture, the location of fractured zone and the existence of clay gouge and/or clay layer which shows lower chargeability than the sand stone layer in the multi-layered ground. Test results show that chargeability is controlled not by the rock fracturing condition but by the size of narrow pore ($r_1$) where each line of current flow passes through. Also, the chargeability decreases with increase of the pore water salinity ($C_0$). In conclusion, the ground condition can be identified more efficiently by measuring the induced polarization along with the electrical resistivity; identifying the existence of sea water, the layered ground and/or the fractured rock becomes more reliable.

The Analysis for the Effect of Effective Compressibility on Oil Recovery in Polymer Flooded Heterogeneous Reservoir (폴리머 공법 적용 불균질 저류층에서의 유효 압축률이 오일생산에 미치는 영향 분석)

  • Baek, Soohyun;Jung, Woodong;Sung, Wonmo;Seo, Junwoo
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The compressibility of fracture in naturally fractured reservoir is larger than the compressibility of matrix in rock, although the compressibility of a typical rock is very small. The effective compressibility including the fracture compressibility should be considered to predict oil recovery correctly. It is hard to quantify changes of fracture aperture and pore volume in reservoir without the effective compressibility. In this study, oil recovery is analyzed by commercial simulator concerning the fracture compressibility based on fracture properties. We found that the effective compressibility affects oil recovery with change of polymer flooding factors such as polymer molar weight, concentration and injection rate. The estimated cumulative oil production is smaller with the effective compressibility than without it. Also, bottomhole pressure decreases rapidly without considering effective fracture compressibility.

Phylogeny and Conservation of the Genus Bupleurum in Northeast Asia with Special Reference to B. latissimum, Endemic to Ulleung Island in Korea (울릉도 고유종인 섬시호를 중심으로 동북아시아 시호속 식물의 계통과 보전생물학)

  • Ahn, Jin-Kab;Lee, Hee-Cheon;Kim, Chul-Hwan;Lim, Dong-Ok;Sun, Byooog-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.1
    • /
    • pp.18-34
    • /
    • 2008
  • Based on external morphology, each of five species can be classified into three groups: 1) B. falcatum group (B. falcatum, B. scorzonerifolium), 2) B. euphorbioides group (B. euphorbioides) and 3) B. longiradiatum group (B. longiradiatum, B. latissimum). B. falcatum group has cauline leaves linear or lanceolate in shape and attenuate at base and not surrounding the stem. In contrast, B. longiradiatum group and B. euphorbioides group have cauline leaves ovate, lanceolate or panduriform in shape and auriculate or cordate at base and completely surrounding the stem. The inflorescence is basically compound umbels terminated at the apex of stem. But B. euphorbioides group is small in size and pedicels are rather short and the number of the pedicel is ca. 20. On the other hand, B. longiradiatum and B. falcatum groups are large in size and their pedicels are long and the number of the pedicel is around 10. The pore of pollen aperture of B. longiradiatum and B. latissimum is partially projected or not while those of B. falcatum group and B. euphorbioides is usually remarkably projected. The number of somatic chromosomes was counted as 2n=20 in B. falcatum, 2n=12 in B. scorzonerifolium and B. longiradiatum, and 2n=16 in B. euphorbioides and B. latissimum. Although chromosome numbers of B. euphorbioides and B. latissimum are the same, the two species are not likely to relate because the karyotypes of the two species are different from each other. Based on these observations, it can be concluded that B. latissimum is most closely related to B. longiradiatum. However, molecular data indicated that the species is probably related to B. bicaule distributed in central Siberia. In terms of conservation of B. latissimum, overexploitation by human and grazing by goat are most threatened factors.