Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.11.719

Molecular cloning and sequence and 3D models analysis of the Sec61α subunit of protein translocation complex from Penicillium ochrochloron  

Azad, Abul Kalam (Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology)
Jahan, Md. Asraful (Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology)
Hasan, Md. Mahbub (Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology)
Ishikawa, Takahiro (Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University)
Sawa, Yoshihiro (Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University)
Shibata, Hitoshi (Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University)
Publication Information
BMB Reports / v.44, no.11, 2011 , pp. 719-724 More about this Journal
Abstract
The $Sec61{\alpha}$ subunit is the core subunit of the protein conducting channel which is required for protein translocation in eukaryotes and prokaryotes. In this study, we cloned a $Sec61{\alpha}$ subunit from Penicillium ochrochloron ($PoSec61{\alpha}$). Sequence and 3D structural model analysis showed that $PoSec61{\alpha}$ conserved the typical characteristics of eukaryotic and prokaryotic $Sec61{\alpha}$ subunit homologues. The pore ring known as the constriction point of the channel is formed by seven hydrophobic amino acids. Two methionine residues from transmembrane ${\alpha}$-helice 7 (TM7) contribute to the pore ring formation and projected notably to the pore area and narrowed the pore compared with the superposed residues at the corresponding positions in the crystal structures or the 3D models of the $Sec61{\alpha}$ subunit homologues in archaea or other eukaryotes, respectively. Results reported herein indicate that the pore ring residues differ among $Sec61{\alpha}$ subunit homologues and two hydrophobic residues in the TM7 contribute to the pore ring formation.
Keywords
Pore aperture; Pore ring; $PoSec61{\alpha}$; $Sec61{\alpha}$ subunit homologues; 3D models;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Azad, A. K., Sato, R., Ohtani, K., Sawa, Y., Ishikawa, T. and Shibata, H. (2011) Functional characterization and hyperosmotic regulation of aquaporin in Synechocystis sp. PCC 6803. Plant Sci. 180, 375-382.   DOI   ScienceOn
2 Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.   DOI   ScienceOn
3 Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK-a program to check the stereochemical quality of protein structure. J. Appl. Cryst. 26, 283-291.   DOI   ScienceOn
4 Maiti, R., Van Domselaar, G. H., Zhang, H. and Wishart, D. S. (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32, 590-594. Web Server issue; DOI: 10.1093/nar/gkh477.   DOI   ScienceOn
5 Pilon, M., Schekman, R. and Romisch, K. (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540-4548.   DOI   ScienceOn
6 Zhou, M. and Schekman, R. (1999) The engagement of Sec61p in the ER dislocation process. Mol. Cell 4, 925-934.   DOI   ScienceOn
7 Junne, T., Schwede, T., Goder, V. and Spiess, M. (2006) The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 17, 4063-4068.   DOI   ScienceOn
8 Goder, V., Junne, T. and Spiess, M. (2004) Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol. Biol. Cell 15, 1470-1478.
9 Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. and Rapoport, T. A. (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795-807.   DOI   ScienceOn
10 Harris, C. R. and Silhavy, T. J. (1999) Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438-3444.
11 Li, W., Schulman, S., Boyd, D., Erlandson, K., Beckwith, J. and Rapoport, T. A. (2007) The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell. 26, 511-521.   DOI   ScienceOn
12 Saparov, S. M., Erlandson, K., Cannon, K., Schaletzky, J., Schulman, S., Rapoport, T. A. and Pohl, P. (2007) Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26, 501-509.   DOI   ScienceOn
13 Azad, A. K., Katsuhara, M., Sawa, Y., Ishikawa, T. and Shibata, H. (2008) Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. Plant Cell Physiol. 49, 1196-1208.   DOI   ScienceOn
14 Van den Berg, B., Clemons, W. M., Jr., Collinson, I., Modis, Y., Hartmann, E., Harrison, S. C. and Rapoport, T. A. (2004) X-ray structure of a protein-conducting channel. Nature 427, 36-44.   DOI   ScienceOn
15 Egea, P. F. and Stroud, R. M. (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. U.S.A. 107, 17182-17187.   DOI   ScienceOn
16 Tsukazaki, T., Mori, H., Fukai, S., Ishitani, R., Mori, T., Dohmae, N., Perederina, A., Sugita, Y., Vassylyev, D. G., Ito, K. and Nureki, O. (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988-991.   DOI   ScienceOn
17 Broughton, J., Swennen, D., Wilkinson, B. M., Joyet, P., Gaillardin, C. and Stirling, C. J. (1997) Cloning of SEC61 homologues from Schizosaccharomyces pombe and Yarrowia lipolytica reveals the extent of functional conservation within this core component of the ER translocation machinery. J. Cell Sci. 110(Pt 21), 2715-2727.
18 Cannon, K. S., Or, E., Clemons, W. M., Jr., Shibata, Y. and Rapoport, T. A. (2005) Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219-225.   DOI   ScienceOn
19 Osborne, A. R. and Rapoport, T. A. (2007) Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97-110.   DOI   ScienceOn
20 Menetret, J. F., Hegde, R. S., Heinrich, S. U., Chandramouli, P., Ludtke, S. J., Rapoport, T. A. and Akey, C. W. (2005) Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445-457.   DOI   ScienceOn
21 Johnson, A. E. and van Waes, M. A. (1999) The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799-842.   DOI   ScienceOn
22 Zimmermann, R., Eyrisch, S., Ahmad, M. and Helms, V. (2011) Protein translocation across the ER membrane. Biochim. Biophys. Acta. 1808, 912-924.   DOI   ScienceOn
23 Osborne, A. R., Rapoport, T. A. and van den Berg, B. (2005) Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529-550.   DOI   ScienceOn
24 Becker, T., Bhushan, S., Jarasch, A., Armache, J. P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., Westhof, E., Gilmore, R., Mandon, E. C. and Beckmann, R. (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369-1373.   DOI   ScienceOn
25 Mandon, E. C., Trueman, S. F. and Gilmore, R. (2009) Translocation of proteins through the Sec61 and SecYEG channels. Curr. Opin. Cell Biol. 21, 501-507.   DOI   ScienceOn