• Title/Summary/Keyword: Pore Volume of Effluent

Search Result 20, Processing Time 0.028 seconds

Thickening of Excess Sludge using Mesh Filter (메쉬 여과모듈을 이용한 잉여슬러지 농축)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.346-351
    • /
    • 2004
  • Because of being produced a great deal of excess sludges from biological wastewater treatment process, the subject regarding treatment and disposal of them has been significantly handled in real plants. It should be considered the alternative treatment with easy operating and cost effective process in rural areas. For the thickening of wasted activated sludge from small scale wastewater treatment facilities, thus, the provisional sludge thickening system was developed by the application of mesh filter module. Three meshes with different pore size(100, 150, $200{\mu}m$) were prepared for filter modules that were used to withdraw effluent from thickening system. A filter module with $100{\mu}m$ mesh was chosen as the most effective thickening material in the viewpoint of volume reduction and effluent quality: the volume reductions of initially injected sludge with 3,600 mg/L and 9,100 mg/L were 95% and 85%, respectively, and the filtered effluents were enough good to be shown below 1.0 mg/L of SS and 1.0 NTU of turbidity. Since the filtration of thickening was influenced by the cake layer formed on mesh filter module and this system was operated in the combination of sludge thickening with gravity settling, the filter modules with smaller pore size and the larger floc size were required for long term operation safely.

Cesium Removal from Soil Contaminated with Radioactivity Using Electrokinetic Method (동전기적방법을 이용한 방사능오염토양 내의 세슘 제거)

  • 김계남;원휘준;김민길;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.696-700
    • /
    • 2003
  • $H_2SO_4$ and citric acid had higher extraction efficiency of $^{137}Cs$ from soil than the other chemicals. Thus, $H_2SO_4$and citric acid were used as additives on remediation experiment by electrokinetic method to increase removal efficiency of $^{137}Cs$ from the radioactive soil being stored during a long time. An average velocity of effluent discharged from experimental column $2.0{\times}10^{-2}$/cm/min and a volume of the discharged soil wastewater for 10 days is 3.6 Pore Volume. The 54% of a total of $^{137}Cs$ in the column was decontaminated for 10 days. Furthermore, the predicted values of residual concentration by the developed model were quite similar to those obtained from experiments.

  • PDF

Elution Patterns and Hydraulic Conductivity Depending on the Incorporated Organic Matter Contents in a Multi-Layered Soil Column (토양내 유기물 함량 변화에 따른 다층 토주의 수리전도도 및 용출 경향)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • This observation was to investigate the influence of raw organic matter incorporated into soil at various rates on hydraulic conductivity and elution of solute throughout soil column. Generally the organic matter content in a practical agricultural field was approximately 3%. However, the application rate of organic matter in the field tends to rapidly increase in these days. Therefore, we raised the application rate of organic matter up to 10% in this investigation. From the experiment, we found that the hydraulic conductivities rapidly decreased with increasing rate of organic matter as well as rapid decrease in total volume of eluent during the same period. And electrical conductivities in the effluent significantly decreased after 2 pore volume, resulting in approaching to the criteria of saline soli. From this we could assume that the organic matter may influence the crop growth in the beginning. However excessive irrigation in the field may cause saturation of soil leading to reduction of soil. Therefore, there must be a management methods in application of organic matter with respect to soil water control.

  • PDF

Effects of cow manure compost on anion elution patterns and hydraulic conductivity (우분퇴비 처리에 따른 토양내 음이온의 용출특성과 투수특성 변화)

  • 정덕영;김필주;박무언;이병렬;김건엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.131-139
    • /
    • 1996
  • To quantitatively investigate the effects of manure compost on the soil and water environment including ground water the elution patterns of anions and hydraulic conductivity wore estimated with four different depth(15, 30, 45 60cm) and four variable ratio of compost treatment(0, 2, 4, 6%) through soil column test. 1. There were over 95% of elution of chloride and nitrate within 0.1 pore volume(PV), and sulfate within 0.2 PV. With 2 ton/10a of cow manure compost treatment recommended total 40 kg/10a of anions added was recovered as effluent at the amount of 17kg chloride, 5.4kg nitrate, and 13.2kg sulfate, respectively However, phosphate rarely recovered in the effluent due to the strong affinity for sorption sites in soils. 2. In multi-layered soil column the maximum peaks of each anion eluted were retardated with increasing soil depth and the amount of organic matter(OM) treatment. 3. With increasing OM up to 2% the saturated hydraulic conductivity(SHC) was greatly decreased, but the slight decrease in SHC was found by addition of OM greater than 4%. In multi-layered soil column SHC was more effected by the lower SHV layer than by that of the higher.

  • PDF

Phenol Removal Using Horseradish Peroxidase(HRP)-Mediated Polymerization Reaction in Saturated Porous Media (다공성 포화 매질에서 효소 중합반응을 이용한 페놀 제거)

  • Kim, Won-Gee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.984-991
    • /
    • 2008
  • This paper reports experimental results, demonstrating the feasibility of horseradish peroxidase(HRP) and H$_2$O$_2$ to reduce phenol transport in saturated porous media. A laboratory-scale packed column reactor(ID: 4.1 cm, sand-bed height 12 cm) column was utilized to simulate injection of HRP and H$_2$O$_2$ into an aquifer contaminated with phenol. Effluent concentrations of phenol and polymerization products were monitored before and after enzyme addition under various experimental conditions(enzyme dose: 0$\sim$2 AU/mL, [ionic strength]: 5$\sim$100 mM, pH: 5$\sim$9). The concentration of phenol in the column effluent was found to decrease by nearly 90% in the presence of HRP(2 AU/mL) and H$_2$O$_2$ in the continuous flow system at pH 7 and ionic strength 20 mM. The influent phenol was converted in the system to insoluble precipitate, which deposited in pore spaces. The remains were discharged as soluble oligomers. About 8% of total pore volume in column system was decreased by deposition of polymer produced.

Particle-size Effect of Silicate Fertilizer on Its Solubility and Mobility in Soil (토양(土壤)에 처리한 광재규산질비료의 입도별(粒度別) 용해도(溶解度) 및 이동성(移動性))

  • Yoo, Sun-Ho;Park, Lee-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.2
    • /
    • pp.57-63
    • /
    • 1980
  • The effect of particle size of silicate fertilizer, crushed slag from the steel industry, on the behavior of silicate in soil was investigated through laboratory experiments. The silicate fertilizer was sieved to obtain three fractions of particles, coarser than 10 mesh 20-35 mesh, and finer than 100 mesh. Silicate concentration of the extract obtained by shaking 20 mg of particles, coarser than 10 mesh, 20-35 mesh, and finer than 100 mesh, in 50 ml of distilled water for 4 hours was 0.3, 1.0, and 3.2 ppm respectively. As shaking the mixture of the silicate fertilizer and soil proceeded, silicate concentration of the extract increased, and this increase after 4 hour shaking was attributed mainly to dissolution of soil silicate. When the mixture of soil and the silicate fertilizer was incubated under submerged condition, silicate concentration of the solution decreased for the first 2-4 weeks, thereafter increased with incubation time. During this incubation period, silicate concentration of the solution changed inversely with pH of the solution. After 6-10 weeks, however, both silicate concentration and pH of the solution increased with incubation time. Silicate concentration of the effluent from the 14.5 cm soil column of which top 4.5 cm was packed with the mixture of 30 g of soil and 30 mg of the silicate fertilizer reached maximum at 0.94 pore volumes for the particles of 20-35 mesh and 1.03 pore volumes for the particles finer than 100 mesh, whereas the effluent concentration reached maximum at 0.88 pore volumes for the soil column without the silicate fertilizer treatment. Soil analysis made after water percolation revealed that 1.5 pore volumes of water could leach down large amount of the water soluble silicate but not the sodium acetate extractable silicate, from top 3-6 cm soil layer.

  • PDF

Sludge Thickening Performance of the Filtration Bio-reactor Equipped with Shadow Mask Filter Module (Shadow mask 여과 모듈을 이용한 슬러지 농축 특성)

  • Jung, Yong-Jun;Kwon, Koo-Ho;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • In order to recycle the waste material and to develop the thickening unit of waste activated sludge from wastewater treatment facilities, the filtration bio-reactor equipped with a shadow mask filter module was employed for this work from which the operating properties and parameters were drawn. The sludge thickening and filtration unit is made of cylindrical acryl tank(12cm i.d. ${\times}$ 58cm height: working volume of 6L), where the flat-sheet type of shadow mask filter module(pore size: 220~250um, opening area: 34.8~39.6%) was installed and the effluent was withdrawn from the effluent port at the lowest point of the reactor, and the filtration was performed only by the hydraulic pressure. For evaluating the operating performance of this reactor, some parameters such as the solid-liquid separation of different biomass concentrations, the water quality of filtrate, the aeration cleaning time and the cleaning effect were investigated. Depending on the MLSS concentrations, the different time to withdraw 3L of filtrate was required in which the longer filtration time was necessary for the higher MLSS concentrations caused by the thicker formation of cake layer: 40 minutes for 5,000 mg/L, 70 minutes for 10,000 mg/L and 100 minutes for 15,000 mg/L, where the concentrations of SS were 8.9, 6.7 and 6.5 mg/L, respectively. Under the same operating conditions (the intensity of aeration cleaning: 80 L/min, MLSS: 10,000 mg/L), the proper aeration cleaning time was revealed 30 seconds, and the stable formation of cake layer was in the range of 10 to 15 minutes. Therefore, the shadow mask considered as a waste material can be of use as a filter material for the sludge thickening system.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Effects of Aerobic Granular Sludge Separator on the Stability of Aerobic Granular Sludge (AGS) (호기성 그래뉼 슬러지 선별 분리기가 호기성 그래뉼 슬러지의 안정성에 미치는 영향)

  • Kwon, Gyutae;Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1081-1092
    • /
    • 2021
  • In this study, the effect on the stability of Aerobic Granular Sludge (AGS) caused by an AGS separator was investigated. The AGS separator was a hydrocyclone. The main factors of the AGS separator were filter pore size (0.125~0.600 mm), conical-to-cylindrical ratio (1.5~3.0), and operating time (1~20 min). The AGS/mixed liquor suspended solid (MLSS) ratio gradually increased to 0.500 mm (AGS/MLSS: 84.3±3.0%). AGS was best separated at the conical-to-cylindrical ratio of 2.5 (AGS/MLSS: 84.7±3.3%). As the operating time increased, the AGS separation performance also tended to increase. The shortest AGS separator run time, but the highest AGS separation performance was 10 min (87.0±2.5%). AGS stability was evaluated by operating the selected AGS separator and sequencing batch reactor. The average removal efficiencies of TOC, TCODCr, SS, TN, and TP were 95.7%, 96.9%, 93.0%, 89.0%, and 96.2%, respectively, which met the effluent standards in Korea. In addition, the AGS/MLSS ratio tended to remain constant, and the sludge volume index demonstrated a tendency to decrease from 140 mL/g to 70 mL/g. During the operation, the particles of AGS in optical microscope observations gradually increased.

황산을 이용한 동전기적방법에 의한 방사능오염토양 복원 연구

  • 오원진;김계남
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.145-153
    • /
    • 2004
  • H$_2$SO$_4$ and citric acid were used as additives for the electrokinetic remediation experiment to increase removal efficiency of $^{137}$ Cs and $^{60}$ Co from the radioactive soil waste stored for more than 10 years. The average effluent velocity discharged from the elctrokinectic remediation experimental column was 2.0${\times}$10$^{-2}$ cm/min and the discharged soil wastewater volume for 10 days is 3.6 pore volume of the column. 97% of $^{60}$ Co in the column was decontaminated for 10 days of operation, while only 54% of $^{137}$ Cs was decontaminated. These results are considered that the absorption equilibrium coefficient of $^{137}$ Cs is higher than that of $^{60}$ Co. The predicted values of the residual concentration by the proposed mathematical model were well coincided with the experimental results within the experimental error range

  • PDF