Browse > Article
http://dx.doi.org/10.5322/JESI.2021.30.12.1081

Effects of Aerobic Granular Sludge Separator on the Stability of Aerobic Granular Sludge (AGS)  

Kwon, Gyutae (BlueBank Co. Ltd.)
Kim, Hyun-Gu (BlueBank Co. Ltd.)
Ahn, Dae-Hee (BlueBank Co. Ltd.)
Publication Information
Journal of Environmental Science International / v.30, no.12, 2021 , pp. 1081-1092 More about this Journal
Abstract
In this study, the effect on the stability of Aerobic Granular Sludge (AGS) caused by an AGS separator was investigated. The AGS separator was a hydrocyclone. The main factors of the AGS separator were filter pore size (0.125~0.600 mm), conical-to-cylindrical ratio (1.5~3.0), and operating time (1~20 min). The AGS/mixed liquor suspended solid (MLSS) ratio gradually increased to 0.500 mm (AGS/MLSS: 84.3±3.0%). AGS was best separated at the conical-to-cylindrical ratio of 2.5 (AGS/MLSS: 84.7±3.3%). As the operating time increased, the AGS separation performance also tended to increase. The shortest AGS separator run time, but the highest AGS separation performance was 10 min (87.0±2.5%). AGS stability was evaluated by operating the selected AGS separator and sequencing batch reactor. The average removal efficiencies of TOC, TCODCr, SS, TN, and TP were 95.7%, 96.9%, 93.0%, 89.0%, and 96.2%, respectively, which met the effluent standards in Korea. In addition, the AGS/MLSS ratio tended to remain constant, and the sludge volume index demonstrated a tendency to decrease from 140 mL/g to 70 mL/g. During the operation, the particles of AGS in optical microscope observations gradually increased.
Keywords
Aerobic granular sludge; Hydrocyclone; Separator; Sequencing batch reactor; Wastewater treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H. G., Ahn, D. H., 2019c, Effects on microbial activity of aerobic granular sludge (AGS) in high-salinity wastewater, Kor. Soc. Environ. Eng., 28, 629-637.
2 Svarovsky, L., 1984, Hydrocyclones; Technomic Publishing Co: London., 79-89.
3 American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
4 de Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769.   DOI
5 Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS), Kor. Soc. Environ. Eng., 28, 607-615.
6 Khan, M. Z., Mondal, P. K., Sabr, S., 2013, Aerobic granulation for wastewater bioremediation: A review, Can. J. Chem. Eng., 91, 1045-1058.   DOI
7 de Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., Dos Santos, A. B., 2018, Aerobic granular sludge: cultivation parameters and removal mechanisms, Bioresour. Technol,, 270, 678-688.   DOI
8 Lee, Y. G., Chon, H. N., Gin, H. Y., Lee, J. H., Moon, J. S., Lee, J. S., Ye, H. Y., Ahn, D. H., Ryu, J. H., 2016, Aerobic granular sludge separator device, Korea Patent, 10-1613711.
9 Campo, R., Lubello, C., Lotti, T., Di Bella, G., 2021, Aerobic granular-sludge membrane bioReactor (AGS-MBR) as a novel configuration for wastewater treatment and fouling mitigation: A mini-review, Memb., 11(4), 261.   DOI
10 de Kreuk, M. K., 2006, Aerobic granular sludge: scaling up a new technology, Ph. D. Dissertation, Delft University of Technology.
11 Fontein, F., Van Kooy, J. and Leniger, H., 1962, The influence of some variables upon hydrocyclone performance, Brit. Chem. Engng., 7, 410-420.
12 Hwang, K. J., Chou, S. P., 2017, Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone, Sep. Purif. Technol., 172: 76-84.   DOI
13 Kim, H. G., Ahn, D. H., 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, Kor. Soc. Environ. Eng., 28, 669-676.
14 Kim, S. M., Jang, A., Chae, G. J., Yoo, H. W., Kim, I. S., 2008, Aerobic granulation in SBR for enhanced biological nutrient removal and application of phosphate solid-state Ion-selective microelectrode to characterize phosphorus removal, Kor. Soc. Environ. Eng. academic presentation papers, 2015-218.
15 Adav, S. S., Lee, D. J., Show, K. Y., Tay, J. H., 2008, Aerobic granular sludge: recent advances, Biotechnol. Adv., 26, 411-423.   DOI
16 Zhang, W., Jiang, F., 2019, Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size, Water Res., 157, 445-453.   DOI
17 Nancharaiah, Y. V., Sarvajith, M., 2019. Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment, Current Opinion in Environ. Sci. Health, 12, 57-65.   DOI
18 Ni, L., Tian, J., Zhao, J., 2016. Experimental study of the effect of underflow pipe diameter on separation performance of a novel defoulant hydrocyclone with continuous underflow and reflux function, Sep. Purif. Technol., 171, 270-279.   DOI
19 Ni, L., Tian, J., Song, T., Jong, Y., Zhao, J., 2019, Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective, Sep. Purif. Technol. Reviews, 48, 30-51.   DOI
20 Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163.   DOI
21 Zhou, J. H., Zhang, Z. M., Zhao, H., Yu, H. T., Alvarez, P. J., Xu, X. Y., Zhu, L., 2016, Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress, Bioresour. Technol., 216, 562-570.   DOI
22 Yang, C., Zhang, W., Liu, R., Li, Q., Li, B., Wang, S., Song, C., Qiao, C., Mulchandani, A., 2011, Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants, Environ, sci, technol., 45, 7408-7415.   DOI
23 Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept, Water Res., 115, 210-219.   DOI
24 Nan, J., Yao, M., Li, Q., Zhan, D., Chen, T., Wang, Z., Li, H,. 2016, The role of shear conditions on floc characteristics and membrane fouling in coagulation/ultrafiltration hybrid process-the effect of flocculation duration and slow shear force. RSC advances, 6, 163-173.   DOI
25 Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172.   DOI
26 Welling, C., Kennedy, A., Wett, B., Johnson, C., Rutherford, B., Baumler, R., Bott, C., 2015. Improving settleability and enhancing biological phosphorus removal through the implementation of hydrocyclones, Proceedings of the Water Environment Federation, 6171-6179.
27 Pronk, M., De Kreuk, M. K., De Bruin, B., Kamminga, P., Kleerebezem, R. V., Van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84, 207-217.   DOI
28 Schwarzenbeck, N., Erley, R., Wilderer, P. A., 2004. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter, Water Sci. Technol., 49, 41-46.   DOI
29 Sguanci, S., Lubello, C., Caffaz, S., Lotti, T., 2019, Long-term stability of aerobic granular sludge for the treatment of very low-strength real domestic wastewater, J. Clean. Prod., 222, 882-890.   DOI
30 Sheik, A. R., Muller, E. E. L., Wilmes, P., 2014, A Hundred years of activated sludge: time to rethink, Front. Microbiol., 5, 47.   DOI
31 Vashi, H., Iorhemen, O. T., Tay, J. H., 2019, Extensive studies on the treatment of pulp mill wastewater using aerobic granular sludge (AGS) technology. Chem. Eng. J., 359, 1175-1194.   DOI
32 Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., Abdullah, N., 2020, Various applications of aerobic granular sludge: A review, Environ. Technol. Innovation, 101045.
33 Yamamoto, T., Oshikawa, T., Yoshida, H., Fukui, K., 2016, Improvement of particle separation performance by new type hydrocyclone, Sep. Purif. Technol., 158, 223-229.   DOI
34 Silva, D. O., Vieira, L. G. M. Barrozo, M. A. S., 2015, Optimization of design and performance of solid-liquid separators: a thickener hydrocyclone, Chem. Eng. Technol., 38, 319-326.   DOI
35 Xu, J., Sun, Y., Liu, Y., Yuan, W., Dai, L., Xu, W., Wang, H., 2019, In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone, Sci. Total Environ., 695, 133825.   DOI
36 Wang, S., Ma, X., Wang, Y., Du, G., Tay, J., Li, J., 2019. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresour. Technol., 273, 350-357.   DOI
37 Haaksman, V. A., Mirghorayshi, M., Van Loosdrecht, M. C. M., Pronk, M., 2020, Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge, Water Res., 187, 116402.   DOI