• Title/Summary/Keyword: Pore Volume

Search Result 829, Processing Time 0.04 seconds

Synthesis of New Black Pigment; Carbon Black Pigment Capsulated into the Meso-pore of Silica as Black Pigment in Cosmetic (새로운 Black Color의 합성;화장품에서 블랙 색소로서 Meso-pore Silca에 캡슐레이션된 Carbon-black Silica)

  • Hye-in, Jang;Kyung-chul, Lee;Hee-chang , Ryoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • Carbon black have not been used as pigment material in cosmetic because of very low density and dispersity, but carbon black have applicable character as black pigment because of non-toxic, stable physico-chemical property, and black colority. In this study, mesoporous silica samples were synthesized by sol-gel reaction using surfactants-template method; TEOS (tetraethoxysilane) - a) PEO/lecithin, b) PEO/polyethylene glycol, c) lecithin/polyethylene glycol in ethanol/water solution. Synthesized organic-inorganic hybrid - silica were heat-treated in N2 condition at 500$^{\circ}C$. Mesoporous silica with black carbon in pore have the effective density and show the good dispersity in both hydrophilic and hydrophobic solvent. Properties of the samples were measured; specific surface area (750㎡/g) and pore size (4-6nm) using BET, pore structure (cylindrical type) using XRD, morphology (spherical powder with 0.1-0.5$\mu\textrm{m}$ partical size) of the samples using SEM. Carbon-silica black color applied to mascara, it shows a dark black colority and good dispersity as compared with the general black color titania pigment. Moreover, it is possible to control the density of black color pigment because it is possible to control pore volume and particle size of mesoporous silica properly. It show the good volume effects in mascara. That is why possible to apply all kinds of cosmetic products.

Pore Size and Distribution of Polyester Fabrics Determined by Liquid Extraction Method (액체유출법에 의한 폴리에스테르 직물의 기공 크기 및 분포 측정)

  • Lee, Dong-Hwa;Yeo, Suk-Yeong;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.206-216
    • /
    • 1997
  • The purpose of this study was to determine the pore size distributions (PSDs) of polyester woven fabrics by using liquid extraction method. Three types of PSDs-percent PSD, PSD per unit area of sample and PSD per unit weight of sample-were evaluated. Plain, twill and satin polyester fabrics with various fabric counts were used as specimens. Results showed that the interyarn PSDs reflected the fabric characteristics such as the fabric count and the weave type and the intrayarn PSDs reflected the thread characteristics such as the number of fibers, the fiber diameter, the thread diameter and the thread twist. Of three types of PSDs, the PSD per unit area of sample best reflect fabric and thread characteritics. As the fabric count decreased, rc increased and interyarn pore volume increased. The PSDs were skewed to the small pore sizes and the pore volumes decreased in the order of plain> twill> satin. As the number of fibers, the fiber diameter and the thread twist decreased, the intrayarn pore volumes were increased.

  • PDF

Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading

  • Bai, Bing;Shi, Xiaoying
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.707-721
    • /
    • 2017
  • The objective of this paper is to experimentally study the consolidation of saturated silty clay subjected to repeated heating-cooling cycles using a modified temperature-controlled triaxial apparatus. Focus is placed on the influence of the water content, confining pressure, and magnitudes and number of thermal loading cycles. The experimental results show that the thermally induced pore pressure increases with increasing water content and magnitude of thermal loading in undrained conditions. After isothermal consolidation at an elevated temperature, the pore pressure continues to decrease and gradually falls below zero during undrained cooling, and the maximum negative pore pressure increases as the water content decreases or the magnitude of thermal loading increases. During isothermal consolidation at ambient temperature after one heating-cooling cycle, the pore pressure begins to rise due to water absorption and finally stabilizes at approximately zero. As the number of thermal loading cycles increases, the thermally induced pore pressure shows a degrading trend, which seems to be more apparent under a higher confining pressure. Overall, the specimens tested show an obvious volume reduction at the completion of a series of heating-cooling cycles, indicating a notable irreversible thermal consolidation deformation.

Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis

  • Subramanian, Sathya;Zhang, Yi;Vinoth, Ganapathiraman;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.423-432
    • /
    • 2020
  • Hydraulic conductivity is one of the engineering properties of soil. This study focusses on the influence of cement content on the hydraulic conductivity of cemented sand, which is investigated based on the results from numerical analysis and laboratory testing. For numerical analysis the cemented samples were scanned using X-ray Computed Tomography (CT) while laboratory testing was carried out using a triaxial setup. Numerical analysis enables us to simulate flow through the sample and provides insight to the microstructure. It quantifies the pore volume, proportion of interconnected voids and pore size distribution in both cemented and uncemented samples, which could be computed only through empirical equations in case of laboratory testing. With reduction in global voids, the interconnecting voids within the samples also reduce with cement content. Gamma cumulative distribution function is used to predict the percentage of voids lesser than a given pore volume. Finally, the results obtained from both numerical analysis and laboratory testing are compared.

Characteristics of Porous Titanium Fabricated by Space-holder Method using NaCl (NaCl을 Space holder로 이용한 타이타늄 다공체의 특성)

  • Son, Byoung-Hwi;Hong, Jae-Geun;Hyun, Yong-Taek;Kim, Seung-Eon;Bae, Seok-Choun
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.488-495
    • /
    • 2011
  • This study was performed to fabricate the porous titanium foam by space holder method using NaCl powder, and to evaluate the effect of NaCl volume fractions (33.3~66.6 vol.%) on the porosities, compressive strength, Young's modulus and permeability. For controlling pore size, CP titanium and NaCl particles were sieved to different size range of 70~150 ${\mu}m$ and 300~425 ${\mu}m$ respectively. NaCl of green Ti compact was removed in water followed by sintered at $1200^{\circ}C$ for 2 hours. Total porosities of titanium foam were in the range of 38-70%. Pore shape was a regular hexahedron similar that of NaCl shape. Porous Ti body showed that Young's modulus and compressive strength were in the range of 0.6-6 GPa and 8-127 MPa respectively. It showed that pore size and mechanical properties of Ti foams was controllable by NaCl size and volume fractions.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.838-842
    • /
    • 2015
  • The Li-air battery is a promising candidate for the most energy-dense electrochemical power source because it has 5 to 10 times greater energy storage capacity than that of Li-ion batteries. However, the Li-air cell performance falls short of the theoretical estimate, primarily because the discharge terminates well before the pore volume of the air electrode is completely filled with lithium oxides. Therefore, the structure of carbon used in the air electrode is a critical factor that affects the performance of Li-air batteries. In a previous study, we reported a new class of carbon nanomaterial, named carbon nanoballs (CNBs), consisting of highly mesoporous spheres. Structural characterization revealed that the synthesized CNBs have excellent a meso-macro hierarchical pore structure, with an average diameter greater than 10 nm and a total pore volume more than $1.00cm^3g^{-1}$. In this study, CNBs are applied in an actual Li-air battery to evaluate the electrochemical performance. The formation mechanism and electrochemical performance of the CNBs are discussed in detail.

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments (고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.711-718
    • /
    • 2011
  • The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

Study on effect of chemical impregnation on the surface and porous characteristics of activated carbon fabric prepared from viscose rayon

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Chobey, O.N.
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • In this study, synthetic viscose rayon fabric has been used for preparing activated carbon fabric (ACF), impregnated with different concentrations of $H_3PO_4$. The effect of $H_3PO_4$ impregnation on the weight yield, surface area, pore volume, chemical composition and morphology of ACF were studied. Experimental results revealed that both Brunauer-Emmett-Teller surface area and micropore volume increased with increasing $H_3PO_4$ concentration; however, the weight yield and microporosity (%) decreased. It was observed that samples impregnated at $70^{\circ}C$ (AC-70) give higher yield and higher microporosity as compared to $30^{\circ}C$ (AC-30). The average pore size of the ACF also gradually increases from 18.2 to 19 and 16.7 to $20.4{\AA}$ for $30^{\circ}C$ and $70^{\circ}C$, respectively. The pore size distribution of ACF was also studied. It is also concluded that the final ACF strength is dependent on the concentration of impregnant.

Effect of Reaction Conditions of Pyrolysis on the Characteristics of Sludge Char (열분해 조건에 따른 슬러지 Char 특성 변화)

  • Cha, Jin-Sun;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.851-856
    • /
    • 2011
  • In this study, char was produced via pyrolysis of sewage sludge and the effects of reaction conditions(temperature, heating rate, reaction time) on characteristics of char were investigated. As temperature increased from $300^{\circ}C$ to $800^{\circ}C$, the surface area of sludge char increased in general but decreased at $700^{\circ}C$ temporarily. The effect of heating rate on specific surface area and pore volume of char was not large. Meanwhile, specific surface area and pore volume increased with reaction time but average pore diameter decreased.