• Title/Summary/Keyword: Population variance

Search Result 487, Processing Time 0.022 seconds

Variance estimation for distribution rate in stratified cluster sampling with missing values

  • Heo, Sunyeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • Estimation of population proportion like the distribution rate of LED TV and the prevalence of a disease are often estimated based on survey sample data. Population proportion is generally considered as a special form of population mean. In complex sampling like stratified multistage sampling with unequal probability sampling, the denominator of mean may be random variable and it is estimated like ratio estimator. In this research, we examined the estimation of distribution rate based on stratified multistage sampling, and determined some numerical outcomes using stratified random sample data with about 25% of missing observations. In the data used for this research, the survey weight was determined by deterministic way. So, the weights are not random variable, and the population distribution rate and its variance estimator can be estimated like population mean estimation. When the weights are not random variable, if one estimates the variance of proportion estimator using ratio method, then the variances may be inflated. Therefore, in estimating variance for population proportion, we need to examine the structure of data and survey design before making any decision for estimation methods.

A Class of Estimators for Population Variance in Two Occasion Rotation Patterns

  • Singh, G.N.;Priyanka, Priyanka;Prasad, Shakti;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.247-257
    • /
    • 2013
  • A variety of practical problems can be addressed in the framework of rotation (successive) sampling. The present work presents a sample rotation pattern where sampling units are drawn on two successive occasions. The problem of estimation of population variance on current (second) occasion in two - occasion successive (rotation) sampling has been considered. A class of estimators has been proposed for population variance that includes many estimators as a particular case. Asymptotic properties of the proposed class of estimators are discussed. The proposed class of estimators is compared with the sample variance estimator when there is no matching from the previous occasion. Optimum replacement policy is discussed. Results are supported with the empirical means of comparison.

THE CALIBRATED VARIANCE ESTIMATOR UNDER THE UNIT NONRESPONSE

  • Son, Chang-Kyoon;Hong, Ki-Hak;Lee, Gi-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.975-987
    • /
    • 2001
  • We treat the problem of variance estimation for the estimator of population total, which is derived from the calibration estimation procedure corresponding to the levels of auxiliary information under nonresponse situation. We develop the calibrated variance estimation procedure using the fact that the population total and variance as well as the sample total and variance of the auxiliary variable are known. We show that the proposed variance estimation procedure improves the $Lundst\ddot{o}rm$ and $S\ddot{a}rndal's$ (1999) procedure with respect to the variance and nonresponse bias reduction through the simulation study.

Analysis of Population Depending on Spatial Unit for Setting Suitable Spatial Unit to Rural Planning (농촌계획 수립에 적합한 공간단위 설정을 위한 공간 단위에 따른 인구 비교 분석)

  • Lee, Jimin
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • Population is important as a fundamental element of local industry and economy, and census data is essential to regional planning and policy making. Although there have been many researches on population and regional planning, there are few studies on population considering spatial unit. In this study, the population of three spatial scales were compared in order to establish the spatial unit suitable for the rural planning. The study area is Gangwon, Chungcheong-Nam, Chungcheong-Buk, Jeolla-Nam, Jeolla-Buk, Gyeonsang-Nam, Gyeonsang-Buk and Jeju province. Population were compared using statistical data analysis, GIS visualization, and spatial statistics. The mean, maximum, minimum, and variance of population were calculated and the coefficient of variation according to spatial unit was compared. The mean, maximum, minimum, and variance of population were calculated and the coefficient of variation according to spatial unit was compared. As the results, the census output area unit is difficult to interpret spatial analysis results. Administrative district unit has the limit that includes areas where the population does not live. The grid unit is well suited to the geographical characteristics but has many disadvantages of the grid with small population. Therefore, It is necessary to complement the limits of the Eup and Myeon-dong administrative district through the grid unit data.

A Study of Departure Process on the Open and Nested Population Constrained Tandem Queueing Network with Constant Service Times (사용자 제한이 적용되는 2계층 대기행렬 네트워크 구조의 이탈과정에 관한 분석)

  • Rhee, Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.113-121
    • /
    • 2009
  • In this paper, we consider the departure process from the open and nested tandem Queueing network with population constraint and constant service times. It is known that the Queueing network can be transformed into a simple Queueing network which can be easy to analyze. Using this simple Queueing network, upper and lower bounds on the interdeparture time are obtained. We prove that the variance of the interdeparture time is bounded within these two bounds. Validation against simulation data is shown that how it works the variance of the interdeparture time within two bounds. These bounds can be applied to obtain the better variance of the interdeparture time using a suitable method.

Families of Estimators of Finite Population Variance using a Random Non-Response in Survey Sampling

  • Singh, Housila P.;Tailor, Rajesh;Kim, Jong-Min;Singh, Sarjinder
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.681-695
    • /
    • 2012
  • In this paper, a family of estimators for the finite population variance investigated by Srivastava and Jhajj (1980) is studied under two different situations of random non-response considered by Tracy and Osahan (1994). Asymptotic expressions for the biases and mean squared errors of members of the proposed family are obtained; in addition, an asymptotic optimum estimator(AOE) is also identified. Estimators suggested by Singh and Joarder (1998) are shown to be members of the proposed family. A correction to the Singh and Joarder (1998) results is also presented.

Performance of Spiked Population Models for Spectrum Sensing

  • Le, Tan-Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In order to improve sensing performance when the noise variance is not known, this paper considers a so-called blind spectrum sensing technique that is based on eigenvalue models. In this paper, we employed the spiked population models in order to identify the miss detection probability. At first, we try to estimate the unknown noise variance based on the blind measurements at a secondary location. We then investigate the performance of detection, in terms of both theoretical and empirical aspects, after applying this estimated noise variance result. In addition, we study the effects of the number of SUs and the number of samples on the spectrum sensing performance.

Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling

  • Singh, Housila P.;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2010
  • This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE's) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.