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Abstract
A variety of practical problems can be addressed in the framework of rotation (successive) sampling. The

present work presents a sample rotation pattern where sampling units are drawn on two successive occasions.
The problem of estimation of population variance on current (second) occasion in two - occasion successive
(rotation) sampling has been considered. A class of estimators has been proposed for population variance that
includes many estimators as a particular case. Asymptotic properties of the proposed class of estimators are
discussed. The proposed class of estimators is compared with the sample variance estimator when there is no
matching from the previous occasion. Optimum replacement policy is discussed. Results are supported with the
empirical means of comparison.

Keywords: Successive (rotation) sampling, variance estimation, bias, mean square error, opti-
mum replacement policy.

1. Introduction

A variety of practical problems can fall in the arena of applied and environmental sciences where
various characters opt to change with respect to different parameters; such changes are inherent be-
havior of the nature. Some type of changes directly or indirectly affect the quality of human living
and surrounding. Such changes draw the attention of human intelligentsia to know the pattern (or
the rate of change) over a desired period or to know the amount of change at any given point of time
(occasion) or simultaneously to know both situations. This requires the continuous monitoring of real
life situations. If the situations are required to be monitored are concerned with a very large group of
individuals, it is difficult, time taking and a costly affair. For example an investigator or owner of a
cold drink industry may be interested in the following type of problems: (a) The average or total sales
of cold drinks for the current season, (b) The change in average sale of cold drinks for two different
seasons, or (c) Simultaneously to know both (a) and (b).

The follow-up of objectives are conducted by means of sampling on successive occasions (over
years or seasons or months) according to a specific rule, with the partial replacement of units, called
successive (rotation) sampling. The problem of successive (rotation) sampling with a partial replace-
ment of sampling units was first considered by Jessen (1942) in the analysis of survey which collected
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farm data. He pioneered using the entire information collected in previous investigations (occasions).
The theory of successive (rotation) sampling was further extended by Patterson (1950), Rao and Gra-
ham (1964), Gupta (1979), Das (1982) and Chaturvedi and Tripathi (1983), among others. Sen (1971)
applied this theory with success in designing the estimator for the population mean on the current
occasion using information on two auxiliary variables available from previous occasions. Sen (1972,
1973) extended his work for several auxiliary variables. Singh et al. (1991) and Singh and Singh
(2001) used the auxiliary information from the current occasion and proposed estimators for the cur-
rent population mean in two-occasion successive (rotation) sampling. Singh (2003) extended their
work for h-occasions successive sampling. Feng and Zou (1997) and Biradar and Singh (2001) used
the auxiliary information on both the occasions to estimate the current population mean in successive
sampling.

In many situations, information on an auxiliary variable may be readily available on the first as
well as on the second occasion. For example, the tonnage (or seat capacity) of each vehicle or ship
is known in survey sampling of transportation, number of beds in different hospitals may be known
in hospital surveys, number of polluting industries and vehicles are known in environmental survey,
nature of employment status, educational status, food availability and medical aids of a locality are
well known in advance to estimate various demographic parameters in demographic surveys. Many
other situations in biological (life) sciences could be explored to show the benefits of the present study.
Utilizing the auxiliary information from both occasions, Singh (2005), Singh and Priyanka (2006,
2007, 2008), and Singh and Karna (2009) proposed a chain-type ratio, difference and regression
estimators to estimate the population mean at current (second) occasion in two-occasion successive
(rotation) sampling.

A large number of estimators that estimate the population mean on the current occasion have been
proposed by various authors, however, only limited efforts have been made to estimate the population
variance on the current occasion in two occasions successive (rotation) sampling.

The present work develops a one- parameter class of estimators that estimate the population vari-
ance on the current occasion in two-occasion successive (rotation) sampling. The proposition of the
class of estimators is such that it includes many estimators as a particular case for particular values
of the parameter. Following the work of Singh and Shukla (1987), we propose a one parameter class
of estimators to estimate the population variance at current occasion in two-occasion rotation pat-
terns. Bias and mean square error of the proposed class of estimators have been derived. Asymptotic
properties are discussed. The proposed class of estimators is compared with the sample variance es-
timator when there is no matching. Optimum replacement policy is discussed. The results have been
supported with suitable empirical studies.

2. Notations

Let U = (U1, U2, . . . , UN) be the finite population of N (large) units and which is assumed to remain
unchanged over two occasions. Let x(y) be the character under study on the first (second) occasion
respectively. A simple random sample (without replacement) of size n units is drawn on the first
occasion and a random sub-sample of size m = nλ units from the sample on the first occasion is
retained (matched) for its use on the current (second) occasion. A fresh (un-matched) sample of size
u = (n−m) = nµ units is drawn on the current occasion from the entire population by a simple random
sampling (without replacement) method so that the sample size on the current occasion is also n. λ
and µ(λ + µ = 1) are the fractions of the matched and fresh samples, respectively, on the current
occasion. Now, we consider the following notations for their further use:
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S 2
x = (N − 1)−1 ∑N

i=1(xi − X̄)2 : The population mean square (variance) of variable x.

S 2
y : The population mean square (variance) of variable y.

s2
x(n): The sample mean square (variance) of variable x and based on sample of size n on the

first occasion.

s2
x(m), s2

y(m): The sample mean squares (variances) of variables x and y of the matched sample
of size m on the first and current (second) occasions respectively.

s2
y(u): The sample mean square (variance) of variable y based on the unmatched (fresh) sample

of size u on the current (second) occasion.

f (= n/N): The sampling fraction.

3. Proposed Class of Estimators

To estimate the population variance S 2
y (Population mean square) on the current (second) occasion,

two independent estimators are suggested. One is based on sample of size u = (nµ) drawn fresh on
the current (second) occasion, and which is given by

T1u = s2
y(u) (3.1)

second estimator is a one-parameter class of estimators based on the sample of size m = (nλ) common
with both occasions and is defined as

T2m(d) = s2
y(m)

 (A +C)s2
x(n) + f Bs2

x(m)

(A + f B)s2
x(n) +Cs2

x(m)

 , (3.2)

where A = (d − 1)(d − 2), B = (d − 1)(d − 4), C = (d − 2)(d − 3)(d − 4), f (= n/N) and d is a non
negative constant identified to minimize the mean square error of T2m(d).

Now considering the convex linear combination of the estimators T1u and T2m(d), we have a class
of estimators of S 2

y as

T̂d = φT1u + (1 − φ)T2m(d), (3.3)

where φ is a unknown constant to be determined to achieve the minimum mean square error of the
class of estimators T̂d.

Remark 1. The following estimators can be identified as a particular case of suggested class of
estimators T̂d to estimate the population variance on the current occasion in two-occasion successive
(rotation) sampling for different values of the unknown parameter d.

(i) T̂1 = φT1u + (1 − φ)T2m(1),

(ii) T̂2 = φT1u + (1 − φ)T2m(2),

(iii) T̂3 = φT1u + (1 − φ)T2m(3),

(iv) T̂4 = φT1u + (1 − φ)T2m(4),

where T2m(1) = s2
y(m)[s2

x(n)/s2
x(m)], T2m(2) = s2

y(m)[s2
x(m)/s2

x(n)], T2m(3) = s2
y(m)[{Ns2

x(n) − ns2
x(m)}/{(N −

n)s2
x(n)}] and T2m(4) = s2

y(m) are respectively ratio, product, dual to ratio and sample variance type
estimators.
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4. Bias and Mean Square Error of the Proposed Estimator T̂dT̂dT̂d

The proposed class of estimators T̂d defined in Equation (3.3) is also a biased estimator of S 2
y , so, its

bias B(·) and mean square error M(·) up-to the first order of approximations is derived under large
sample approximations with the following transformations:

s2
y(m) = S 2

y
(
1 + e0(m)

)
, s2

y(u) = S 2
y
(
1 + e0(u)

)
, s2

x(m) = S 2
x
(
1 + e1(m)

)
, s2

x(n) = S 2
x
(
1 + e1(n)

)
,

such that E
(
e0(m)

)
= E

(
e0(u)

)
= E

(
e1(m)

)
= E

(
e1(n)

)
= 0,

E
(
e2

1(m)

)
=
{β2(x) − 1}

m
, E

(
e2

1(n)

)
=
{β2(x) − 1}

n
, E

(
e0(m)e1(m)

)
=

(h − 1)
m

,

E
(
e1(m)e1(n)

)
=
{β2(x) − 1}

n
, E

(
e0(m)e1(n)

)
=

(h − 1)
n

,

where h = (µ22/(µ20µ02)), µrs = 1/N
∑N

i=1(yi − Ȳ)r(xi − X̄)s. Under the above transformations, the
estimator T2m(d) takes the following form:

T2m(d) = S 2
y
(
1 + e0(m)

) (
1 + d1e1(n) + d2e1(m)

) (
1 + d3e1(n) + d4e1(m)

)−1 ,

where d1 = (A +C)/(A + f B +C), d2 = ( f B)/(A + f B +C), d3 = (A + f B)/(A + f B +C) and d4 =

C/(A + f B +C).
Thus, we have the following theorems:

Theorem 1. The bias of the estimator T̂d to the first order of approximations is obtained as

B
(
T̂d

)
= (1 − φ)B{T2m(d)}, (4.1)

where

B{T2m(d)} =
[
{β2(x) − 1}

{
1
n

(
−d1d3 − d2d3 − d1d4 + d2

3 + 2d3d4

)
+

1
m

(
d2

4 − d2d4

)}
+(h − 1)

{
1
n

(d1 − d3) +
1
m

(d2 − d4)
}]

S 2
y .

Proof: The bias of the estimator T̂d is given by

B
(
T̂d

)
= E

[
T̂d − S 2

y

]
= φE

(
T1u − S 2

y

)
+ (1 − φ) E

(
T2m(d) − S 2

y

)
= φB (T1u) + (1 − φ) B {T2m(d)} . (4.2)

Since, T1u is unbiased for S 2
y , therefore,

B(T1u) = 0 (4.3)

and

B(T2m(d)) = E
[
T2m(d) − S 2

y

]
= φE

[
S 2

y
(
1 + e0(m)

) (
1 + d1e1(n) + d2e1(m)

) (
1 + d3e1(n) + d4e1(m)

)−1 − S 2
y

]
.
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Now expanding the right hand side of above expression binomially, taking expectations and retaining
the terms up-to the first order of approximations, we have

B{T2m(d)} =
[
{β2(x) − 1}

{
1
n

(
−d1d3 − d2d3 − d1d4 + d2

3 + 2d3d4

)
+

1
m

(
d2

4 − d2d4

)}
+(h − 1)

{
1
n

(d1 − d3) +
1
m

(d2 − d4)
}]

S 2
y . (4.4)

Using Equation (4.3) and Equation (4.4) in Equation (4.2), we get the bias of the estimator T̂d as given
in Equation (4.1). �

Theorem 2. The mean square error of the estimator T̂d is given by

M
(
T̂d

)
= φ2V (T1u) + (1 − φ)2 M {T2m(d)}opt , (4.5)

where

V(T1u) =
1
u
{β2(y) − 1}S 4

y ,

M{T2m(d)}opt =

[
a
m
+

(
1
m
− 1

n

)
b
]

S 4
y ,

where a = {β2(y) − 1}, b = α∗
2 {β2(x) − 1} + 2α∗(h − 1), α∗ = [α]d=d0 , α = (d2 − d4) = (d3 − d1) and d0

is the optimum value of d.

Proof: Since T1u and T2m(d) are based on two independent samples, therefore, for large N the covari-
ance type term is ignored. Hence

M
(
T̂d

)
= E

[
T̂d − S 2

y

]2
= E

[
φ
(
T1u − S 2

y

)
+ (1 − φ)

(
T2m(d) − S 2

y

)]2

= φ2V (T1u) + (1 − φ)2 M {T2m(d)} , (4.6)

where

V(T1u) = E
[
T1u − S 2

y

]2
=

1
u
{β2(y) − 1}S 4

y , (4.7)

M(T2m(d)) = E
[
T2m(d) − S 2

y

]2

= φE
[
S 2

y
(
1 + e0(m)

) (
1 + d1e1(n) + d2e1(m)

) (
1 + d3e1(n) + d4e1(m)

)−1 − S 2
y

]2
.

Now expanding the right hand side of above expression binomially, taking expectations, retaining the
terms up-to the first order of approximations and for large N ignoring fpc, we have

M{T2m(d)} =
[
{β2(y) − 1}

m
+

(
1
m
− 1

n

)
α2{β2(x) − 1} + 2α(h − 1)

]
S 4

y .

The above expression is a function of α, which is a function of d, that can be minimized for d;
therefore, we have M{T2m(d)}/∂d = 0, this gives

α =
f B −C

A + f B +C
=

(1 − h)
{β2(x) − 1} ; assuming

∂α

∂d
, 0. (4.8)
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A close look of the Equation (4.8) reveals that it is a cubic equation in d. Therefore, for given h and
β2(x) one will get three optimum values of d for which M{T2m(d)} attains the same minimum value.
The possibility of getting negative or imaginary roots cannot be ruled out. However, Shukla (1988)
has pointed out that for any choice of f , h and β2(x), there exists at least one positive real root of
the Equation (4.8) ensuring that M{T2m(d)} attains its minimum within the parametric space (0,∞).
Since, there may exists at most three optimum values of d, a criterion for selecting suitable value of
optimum d may be set as follows:

“Out of all the possible values of optimum d, select the d = d0 as the most suitable choice, which
makes |B{T2m(d)}| smallest ”.

Hence, the minimum mean square error of T2m(d) is given by

M{T2m(d)}opt =

[
a
m
+

(
1
m
− 1

n

)
b
]

S 4
y , (4.9)

where a = {β2(y) − 1}, b = α∗
2 {β2(x) − 1} + 2α∗(h − 1), α∗ = [α]d=d0 .

Using Equation (4.8) and Equation (4.9) in Equation (4.6) we get the expression for the mean
square error of T̂d as given in Equation (4.5). �

Remark 2. The bias and mean square error of the estimators T̂1, T̂2, T̂3 and T̂4 discussed in remark 1
can be deduced from Equation (4.1) and Equation (4.5) for specific values of the parameter d (i.e., d =
1, 2, 3, 4).

Theorem 3. The estimator T2m(d), its bias and mean square error are asymptotically convergent to
the estimator T2m(1), its bias and mean square error respectively for large d.

Proof: Since, d , 0, dividing numerator and denominator of the R. H. S of Equation (3.2) by d3 and
taking the limit as d → ∞, we have

lim
d→∞

T2m(d) = s2
y(m)

 s2
x(n)

s2
x(m)

 = T2m(1).

This is the ratio type estimator to estimate population variance given by Isaki (1983). Similarly, using
the expression of bias and mean square error of the estimator T2m(d) , it is easy to see that

lim
d→∞

B{T2m(d)} = B{T2m(1)}

and

lim
d→∞

M{T2m(d)} = M{T2m(1)}.

The proposed class of estimators converges to a well-defined estimator even if one chooses arbitrarily
a larger value of the unknown parameter d. The bias and mean square error also tends asymptotically
to that of Isaki (1983) type estimator to estimate finite population variance. There is no need to bother
about the existence of the estimator defined for the matched portion of the sample while choosing a
larger value of d. �
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5. Minimum Mean Square Error of the Proposed Estimator T̂dT̂dT̂d

Since, mean square error of T̂d in Equation (4.5) is a function of unknown constant φ, therefore, it is
minimized with respect to φ and subsequently the optimum value of φ is obtained as

φopt =
M{T2m(d)}opt

V(T1u) + M{T2m(d)}opt
(5.1)

and substituting the value of φopt from Equation (5.1) in Equation (4.5), we get the optimum mean
square error of the estimator T̂d as

M
(
T̂d

)
opt
=

V(T1u).M{T2m(d)}opt

V(T1u) + M{T2m(d)}opt
. (5.2)

Further, to substitute the values from Equation (4.7) and Equation (4.9) in Equation (5.2), we get the
simplified values of M(T̂d)opt which is shown in Theorem 4.

Theorem 4. The minimum mean square error of the estimator T̂d is derived as

M
(
T̂d

)
opt
=

a
n

[
a + µb
a + µ2b

]
S 4

y , (5.3)

where µ (= u/n) is the fraction of fresh sample drawn on the current (second) occasion. Again
M(T̂d)opt derived in Equation (5.3) is the function of µ. To estimate the population variance on each
occasion the better choice of µ is 1 (case of no matching); however, to estimate the change in variance
from one occasion to the other, µ should be 0 (case of complete matching). But intuition suggests that
an optimum choice of is desired to devise the amicable strategy for both problems simultaneously.
Hence, in the next section of this problem, an optimum replacement policy for µ has been discussed.

6. Optimum Replacement Policy

The key design parameter affecting the estimates of change is the overlap between successive samples.
Maintaining high overlap between repeats of a survey is operationally convenient, since many sampled
units have been located and have some experience in the survey. Hence, to determine the optimum
value of µ (fraction of sample to be drawn fresh on the current occasion) so that S 2

y may be estimated
with maximum precision, we minimize M(T̂d)opt in (5.3) with respect to µ and hence we get

µ̂ =
−a ±

√
a(a + b)
b

. (6.1)

The real values of µ̂ exist, iff a(a + b) ≥ 0. For any situation, which satisfies this condition, two real
values of µ̂ are possible, hence, to choose a value of µ̂, it should be remembered that 0 ≤ µ̂ ≤ 1, all
other values of µ̂ are inadmissible. If both the real values of µ̂ are admissible, the lowest one will
be the best choice as it reduces the cost of the survey. Substituting the admissible value of µ̂ say µ0
from Equation (6.1) in Equation (5.3), we have the optimum values of the mean square error of the
estimator T̂d, which is shown as

M
(
T̂d

)
opt∗
=

a
n

a + µ0b
a + µ2

0b

 S 4
y .
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7. Efficiency Comparison

To study the performance of the estimator T̂d, the percent relative efficiencies of the estimator T̂d

with respect to s2
y(n) (the natural estimator of S 2

y), when there is no matching. Since, s2
y(n) is unbiased

estimator of S 2
y , so the variance of s2

y(n) for large N (i.e.,N → ∞) is given by

V
(
s2

y(n)

)
=

1
n
{β2(y) − 1}S 4

y .

Table 3, shows the optimum value of µ i.e., µ0 and the percent relative efficiency E of the estimator
T̂d (under optimal condition) with respect to s2

y(n), where

E =
V

(
s2

y(n)

)
M

(
T̂d

)
opt∗

× 100.

8. Numerical Illustrations

The various results obtained in previous sections are now examined with the help of two natural
population sets of data.

Populations Source: [Free access to the data by the Statistical Abstracts of the United States]. The
first case analyzes the variance of the infant mortality rates of US in the year 2002. The population
consists of N = 51 states. Further let Yi (study variable) be the infant mortality rates in the year 2002
and Xi be the infant mortality rates in the year 2000 in the ith state of US.

Similarly, the second natural population estimates the variance of the abortion rate in different
states during 2000. Here, also the population consists of N = 51 states. Let Yi (study variable) denote
the rates of abortions during 2000 and Xi be the rate of abortions in the year 1992 in the ith state of
US.

Based on the above description, the values of the different required parameters for both popula-
tions are:

Population I:

N = 51, X̄ = 22.6686, Ȳ = 17.4431, β2(x) = 25.7309, β2(y) = 9.1367,

µ22 = 6.2904 × 105, µ20 = 125.5091, µ02 = 338.2041 and S 2
y = 128.0193.

Population II:

N = 51, X̄ = 7.1824, Ȳ = 7.1216, β2(x) = 3.9212, β2(y) = 2.8800,

µ22 = 15.1769, µ20 = 2.3703, µ02 = 2.1564 and S 2
y = 2.4177.

Now, solving the cubic equation in (4.8) for d, we have three values of d for each given values of f .
The mean square error will be same for all the three values of d. So, using the criterion set above,
Table 1 shows the best choice of optimum value of d for different values of f , for Population I and
Table 2 shows the same for Population II.

9. Interpretation of Results and Conclusion

Tables 1, 2 and 3 show that for both the populations the real optimum values of d always exist and
the percent relative efficiency in both cases is appreciable when compared with the sample variance
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Table 1: Best choice of d for Population I, for different values of f
f d Bias |Bias| d0

1.9333 −11465.00 11465.00
0.01 6.1106 −10548.00 10548.00

2.2579 −10139.00 10139.00 2.2579
1.8905 −5797.10 5797.10

0.02 6.1343 −5286.50 5286.50
2.3123 −4922.40 4922.40 2.3123
1.8572 −3896.30 3896.30

0.03 6.1583 −3532.50 3532.50
2.3570 −3194.90 3194.90 2.3570
1.8293 −2941.00 2941.00

0.04 6.1824 −2655.50 2655.50
2.3960 −2336.00 2336.00 2.3960
1.8052 −2365.30 2365.30

0.05 6.2068 −2129.20 2129.20
2.4311 −1823.20 1823.20 2.4311
1.7838 −1980.00 1980.00

0.06 6.2313 −1778.30 1778.30
2.4634 −1482.90 1482.90 2.4634
1.7644 −1703.80 1703.80

0.07 6.2560 −1527.60 1527.60
2.4933 −1240.80 1240.80 2.4933
1.7468 −1496.00 1496.00

0.08 6.2809 −1339.60 1339.60
2.5214 −1060.10 1060.10 2.5214

Table 2: Best choice of d for Population II, for different values of f
f d Bias |Bias| d0

1.8586 −18.5827 18.5827
0.01 7.1196 −17.9382 17.9382

2.1419 −16.8658 16.8658 2.1419
1.8074 −9.4090 9.4090

0.02 7.1572 −8.9864 8.9864
2.2069 −8.1758 8.1758 2.2069
1.7699 −6.3261 6.3261

0.03 7.1950 −6.0023 6.0023
2.2579 −5.3035 5.3035 2.2579
1.7396 −4.7753 4.7753

0.04 7.2331 −4.5102 4.5102
2.3016 −3.8763 3.8763 2.3016
1.7137 −3.8403 3.8403

0.05 7.2714 −3.6148 3.6148
2.3404 −3.0244 3.0244 2.3404
1.6911 −3.2143 3.2143

0.06 7.3100 −3.0177 3.0177
2.3759 −2.4590 2.4590 2.3759
1.6709 −2.7655 2.7655

0.07 7.3488 −2.5912 2.5912
2.4086 −2.0567 2.0567 2.4086
1.6526 −2.4278 2.4278

0.08 7.3879 −2.2713 2.2713
2.4392 −1.7561 1.7561 2.4392
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Table 3: Optimum value of µ and percent relative efficiency of T̂d (under optimal condition) with respect to s2
y(n).

Population I II
µ0 0.8158 0.6485

PRE 167.17 129.69

estimator when there is no matching. The nice convergence property of the proposed class of estima-
tors reinforces the importance of incorporation of unknown parameter in the structure of the estimator
as the optimum value of the parameter is always possible. Under the given framework it is possi-
ble to reduce the bias of the estimator defined for the matched portion of the sample along with the
minimization of the mean square error (m. s. e.), which is generally not possible in other class of
estimators. The analytical and empirical results support the theoretical justification of the work. The
estimation of population variance on successive occasions should be encouraged as there are numer-
ous practical situations that require the estimate of variance at different points of time as the characters
are time dependent. Hence, the proposed class of estimators should be recommended to the survey
statisticians for their use.
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