• Title/Summary/Keyword: Population dynamics model

Search Result 141, Processing Time 0.027 seconds

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

Study on optimum structure of air-lift bio-reactor using numerical analysis of two-phase flow (이상 유동 수치해석을 이용한 기포 구동 생물 반응기 내부 최적 구조에 관한 연구)

  • Kim, San;Chung, Ji Hong;Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.24-31
    • /
    • 2019
  • Recently, an air-lift bio-reactor operated by micro bubbles has been utilized to product hydrogen fuel. To enhance the performance, characteristics of hydrodynamics inside the bio-reactor were analyzed using a numerical simulation for two-phase flow. An Eulerian model was employed for both of liquid and gas phases. The standard k-ε model was used for turbulence induced by micro bubbles. A Population Balance Model was employed to consider size distribution of bubbles. A hollow cylinder was introduced at the center of the reactor to reduce a dead area which disturbs circulation of CO bubbles. An appropriate diameter of the draft tube and hollow cylinder were optimized for better performance of the bio-reactor. The optimum model could be obtained when the cross-sectional area ratio of the hollow cylinder to the reactor, and the width ratio of the riser to the downcomer approached 0.4 and 3.5, respectively. Consequently, it is expected that the optimum model could enhance the performance of the bio-reactor with the homogeneous distribution and higher density of CO, and more effective mixing.

Effects of Interaction Range on the Behavior of Opinion Consensus

  • Lee, Seungjae;Cho, Young Sul;Hong, Hyunsuk
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1406-1409
    • /
    • 2018
  • We have frequently encountered the rapid changes that prevalent opinion of the social community is toppled by a new and opposite opinion against the pre-exiting one. To understand this interesting process, mean-field model with infinite-interaction range has been mostly considered in previous studies S. A. Marvel et al., Phys. Rev. Lett. 110, 118702 (2012). However, the mean-field interaction range is lack of reality in the sense that any individual cannot interact with all of the others in the community. Based on it, in the present work, we consider a simple model of opinion consensus so-called basic model on the low-dimensional lattices (d = 1, 2) with finite interaction range. The model consists of four types of subpopulations with different opinions: A, B, AB, and the zealot of A denoted by $A_c$, following the basic model shown in the work by S. A. Marvel et al.. Comparing with their work, we consider the finite range of the interaction, and particularly reconstruct the lattice structure by adding new links when the two individuals have the distance < ${\sigma}$. We explore how the interaction range ${\sigma}$ affects the opinion consensus process on the reconstructed lattice structure. We find that the critical fraction of population for $A_c$ required for the opinion consensus on A shows different behaviors in the small and large interaction ranges. Especially, the critical fraction for $A_c$ increases with the size of ${\sigma}$ in the region of small interaction range, which is counter-intuitive: When the interaction range is increased, not only the number of nodes affected by $A_c$ but also that affected by B grows, which is believed to cause the increasing behavior of the critical fraction for $A_c$. We also present the difference of dynamic process to the opinion consensus between the regions of small and large interaction ranges.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.

Population Dynamics of Crangon hakodatei from Coastal Area of Geoje Island, Korea (거제도 연안에 서식하는 마루자주새우, Crangon hakodatei의 개체군 역학)

  • Choi Jung Hwa;Kim Jung Nyun;Kim Sung Tae;Cha Hyung Kee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.380-385
    • /
    • 2002
  • The sand shrimp, Crangon hakodatei commonly occured in the southern coast of Korea. The population structure, growth, mortality, and size at sexual maturity of C. hakodatei were examined by the samples collected from the coastal area of Geoje Island, Korea from October 2000 to October 2001. For estimation of parameters of growth and mortality, monthly length-frequency data were analysed by ELEFAN. Parameters of growth were estimated, using the modified yon Bertalanffy growth function model. The female grew faster and reached larger size at the same age than the male, There was a breeding season showing a peak in winter (January to february). Total mortality by length-converted catch curve was estimated at $3.10 yr^{-1}$, fishing mortality was $0.62 y^{-1}$ and natural mortality was $2.48 yr^{-1}$. The size at $50\%$ sexual maturity for the female ranged from CL 11.00 to 11.50 mm.

Past Trends and Future Estimation of Annual Breast Cancer Incidence in Osaka, Japan

  • Toyoda, Yasuhiro;Tabuchi, Takahiro;Nakayama, Tomio;Hojo, Shigeyuki;Yoshioka, Setsuko;Maeura, Yoshiichi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2847-2852
    • /
    • 2016
  • Background: Although the breast cancer incidence rate in Japan is lower than in western countries, the age-specific rates have markedly increased in recent years, along with the problems of declining birth rate and an aging population. Materials and Methods: We examined past trends of age-specific breast cancer incidence using data from the Osaka Cancer Registry from 1976 to 2010, and estimated future trends until 2025 based on the changes observed and population dynamics using a log linear regression model. Results: The age-specific breast cancer incidence rate has increased consistently from the 1970s, and the rates have caught up with those of Japanese-Americans in the US. Assuming the increasing tendency of age-specific breast cancer incidence to be constant, the average annual incidence of breast cancer will increase 1.7-fold from 2006-2010 to 2021-2025. Furthermore, the number of patients aged 80 years should increase 3.4-fold. Conclusions: The medical demand for breast cancer care in Japan may increase explosively in the future, particularly among the elderly. We need to prepare for such a future increase in demand for care, although careful monitoring is needed to confirm these results.

Effects of Temperature on the Development and Reproduction of Matsumuraeses falcana (Lepidoptera: Tortricidae) (어리팥나방(Matsumuraeses falcana)의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo; Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.435-447
    • /
    • 2022
  • The soybean podborer, Matsumuraeses falcana (Lepidoptera: Tortricidae), is one of important pests in soybean crop. In the purpose of forecasting population dynamics of M. falcana, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of Matsumuraeses falcana at seven constant temperatures of 10, 13, 19, 22, 25, 28, and 31℃. Eggs hatched successfully at all temperature subjected. M. falcana developed from egg hatching to adult emergence at the tested temperatures except 10, 13, and 31℃. The developmental period of each life stage and adult longevity of M. falcana decreased as temperature increased. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. falcana were estimated by linear regression as 10.2℃ and 492.04DD, respectively. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. TL and TH from egg hatching to adult emergence using SSI model were 16.7℃ and 29.1℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. falcana was 12.4℃. We constructed the adult oviposition model of M. falcana using adult survivorship and fecundity. Temperature-dependent immature development and adult oviposition models will help constructing the population model of M. falcana and developing the strategies of integrated pest management in soybean fields.

Locational Analysis of Rural Industrial Estates and Chonbuk Economic Development Strategies (농공지구 입지분석 : 전라북도의 경우)

  • 박임구;백영기;장재우
    • Journal of the Korean Regional Science Association
    • /
    • v.9 no.2
    • /
    • pp.103-119
    • /
    • 1993
  • This research examines the spatial development of rural industrial estates (Nong-gong Jigu) in Chonbuk province and gives insight into the strategies for economic development in the entire region. Selected location factors which are likely to pull new investment into the estates are examined by using questionnaires. Few loction factors except nonlocal factors can be found in explaining why location choices are made. The irrelevance of the analysis based on location factors suggests that an alternative approach should analyze changes in the spatial development of the rural industrial estates. Such an alternative is to understand the dynamics of the spatial organization of production by focusing on characteistics of plant closing in the rural industrial estates. To take into account of the characteristics of plant closing we provide the hypothesized relationships between employment size, organizational structure, inter and intra industrial linkage, characteristics of production processes, and availability of local labor market and the likelihood of closing. A logit model is then made to identify the selected factors which might influence the probability of plant closing. The results from the logit analysis and their implications suggest that the policy should be more concerned with the characteristics of firms, such as size and ownership, as well as of the local labor markets. Given that the Chonbuk region has experienced rapid population decline, together with its poor industrial base, it seems that the success of the policy in the declined rural areas in less certain.

  • PDF

A Study on Optimization of Motion Parameters and Dynamic Analysis for 3-D.O.F Fish Robot (3 자유도 물고기 로봇의 동적해석 및 운동파라미터 최적화에 관한 연구)

  • Kim, Hyoung-Seok;Quan, Vo Tuong;Lee, Byung-Ryong;Yu, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1029-1037
    • /
    • 2009
  • Recently, the technologies of mobile robots have been growing rapidly in the fields such as cleaning robot, explosive ordnance disposal robot, patrol robot, etc. However, the researches about the autonomous underwater robots have not been done so much, and they still remain at the low level of technology. This paper describes a model of 3-joint (4 links) fish robot type. Then we calculate the dynamic motion equation of this fish robot and use Singular Value Decomposition (SVD) method to reduce the divergence of fish robot's motion when it operates in the underwater environment. And also, we analysis response characteristic of fish robot according to the parameters of input torque function and compare characteristic of fish robot with 3 joint and fish robot with 2 joint. Next, fish robot's maximum velocity is optimized by using the combination of Hill Climbing Algorithm (HCA) and Genetic Algorithm (GA). HCA is used to generate the good initial population for GA and then use GA is used to find the optimal parameters set that give maximum propulsion power in order to make fish robot swim at the fastest velocity.

Analysis of the Influence of Urban Land Cover Changes on the Thermal Environment of the Atmospheric Boundary Layer Using Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 도시 지표 피복 변화가 대기 경계층 열적 환경에 미치는 영향 분석)

  • Kim, Ji-Seon;Yoo, Jung-Woo;Na, Mun-Soo;Kim, Yong-Gil;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1153-1170
    • /
    • 2020
  • With global warming and the rapid increase in urbanization accompanied by a concentration of population, the urban heat island effects (UHI) have become an important environmental issue. In this study, rooftop greening and permeable asphalt pavement were selected as measures to reduce urban heat island and applied to a simple virtual urban environment to simulate temperature change using ENVI-met. A total of five measures were tested by dividing the partial and whole area application of each measure. The results showed that the temperature range of the base experiment is 33.11-37.11 ℃, with the UTCI comfort level described as strong heat and very strong heat stress. A case applied permeable asphalt has a greater temperature difference than a rooftop greening case, the larger the area where each condition was applied, the greater the temperature change was.