• 제목/요약/키워드: Poor solvers

검색결과 5건 처리시간 0.02초

초등 과학 영재의 과학 문제 해결 과정 분석 (Analysis on Science Problem Solving Process of the Elementary Science Gifted Students)

  • 임청환;임귀숙
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제30권2호
    • /
    • pp.213-231
    • /
    • 2011
  • The purpose of this study was to investigate knowledge types which the elementary science gifted students would use when solving a science problem, and to examine characteristics and types that were shown in the science problem solving process. For this study, 39 fifth graders and 38 sixth graders from Institute of Education for the Gifted Science Class were sampled in one National University of Education. The results of this study were as follows. First, for science problem solving, the elementary science gifted students used procedural knowledge and declarative knowledge at the same time, and procedural knowledge was more frequently used than declarative knowledge. Second, as for the characteristics in the understanding step of solving science problems, students tend to exactly figure out questions' given conditions and what to seek. In planning and solving stage, most of them used 3~4 different problem solving methods and strategies for solving. In evaluating stage, they mostly re-examined problem solving process for once or twice. Also, they did not correct the answer and had high confidence in their answers. Third, good solvers had used more complete or partially applied procedural knowledge and proper declarative knowledge than poor solvers. In the problem solving process, good solvers had more accurate problem-understanding and successful problem solving strategies. From characteristics shown in the good solvers' problem solving process, it is confirmed that the education program for science gifted students needs both studying on process of acquiring declarative knowledge and studying procedural knowledge for interpreting new situation, solving problem and deducting. In addition, in problem-understanding stage, it is required to develop divided and gradual programs for interpreting and symbolizing the problem, and for increasing the understanding.

초등 과학 최상위권 학생의 과학 탐구 능력 문제 해결 과정에서의 성별 특성 (The Highest Achievers' Gender Characteristics in Elementary Science Process Skills of Problem Solving)

  • 박병태
    • 영재교육연구
    • /
    • 제20권2호
    • /
    • pp.527-546
    • /
    • 2010
  • 과학 최상위권 남녀 학생 14명(남 7명, 여 7명)을 최종 선정하여 과학 탐구 문제 해결과정에 따른 성별 특성에 대한 연구를 수행하였다. 연구결과, 남학생이 기초 탐구 능력에서 문제를 더 쉽게 해결하였고 통합 탐구 능력에서는 여학생이 문제를 더 쉽게 해결하였다. 성공하는 경우, 남학생은 기억에 의한 계획 유형과 문두와 답지의 내용을 모두 확실히 아는 풀이 유형 및 답지 중 확실히 알고 있는 유형으로 문제를 푸는 경향이 높았다. 여학생의 경우 문두와 답지를 분석하거나 표, 그래프, 그림을 분석하여 성공하는 경향이 높았다. 여학생이 남학생에 비해 다양한 방법으로 문제 해결을 하는 경향이 있음을 보여주고 있다. 실패하는 경우, 남학생은 즉시 풀이하면서 충분히 이해가 되지 않은 상태에서 답을 구하거나 잘못된 기억으로 해결하다 실패를 하는 경향이 높고 여학생은 잘 못 기억하거나 표, 그림, 그래프를 잘 못 분석한 풀이 유형이 많았다. 이 결과는 과학 탐구 능력 문제 해결에 대한 남녀 학생에 대한 이해를 높일 수 있고 프로그램 개발에 시사점을 제공한다.

A New Method for Coronal Force-Free Field Computation That Exactly Implements the Boundary Normal Current Density Condition

  • 이시백;전홍달;이중기;최광선
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.71.3-71.3
    • /
    • 2019
  • Previously we developed a method of coronal force-free field construction using vector potentials. In this method, the boundary normal component of the vector potential should be adjusted at every iteration step to implement the boundary normal current density, which is provided by observations. The method was a variational method in the sense that the excessive kinetic energy is removed from the system at every iteration step. The boundary condition imposing the normal current density, however, is not compatible with the variational procedure seeking for the minimum energy state, which is employed by most force-free field solvers currently being used. To resolve this problem, we have developed a totally new method of force-free field construction. Our new method uses a unique magnetic field description using two scalar functions. Our procedure is non-variational and can impose the boundary normal current density exactly. We have tested the new force-free solver for standard Low & Lou fields and Titov-Demoulin flux ropes. Our code excels others in both examples, especially in Titov-Demoulin flux ropes, for which most codes available now yield poor results. Application to a real active region will also be presented.

  • PDF

물리문제(物理問題) 해결과정(解決過程)에서 중학생(中學生)들의 사고과정(思考過程)의 특성(特性) 분석(分析) (An Analysis of the Characteristics on the Middle School Students' Thinking Processes in Solving Physics Problems)

  • 박학규;이용현
    • 한국과학교육학회지
    • /
    • 제13권1호
    • /
    • pp.31-47
    • /
    • 1993
  • This study was intended to find the characteristics of the middle school students' thinking processes and problem spaces when they solved the physics problems. Ten ninth grade students in Chon-Buk Do, Korea were participated in this study. The researcher investigated their thinking processes in solving 5 physics problems on electric circuit. "Thinking aloud" method was used as a research method. The students' thinking processes were recorded using an audio tape recorder and transfered into protocols. The protocols were analyzed by problem solving process coding system which was developed by Lee(1987) on the basis of Larkin's problem solving process model. The results are as follows : (1) On the average 2.85 items were solved among 5 test items, and only one person could solve all of the items correctly. (2) Problems were solved in sequence of understanding the problem, planning, carrying out the plan, and evaluating steps regardless of the problem difficulty. (3) In regard to the thinking process steps, there was no difference between the good solvers and the poor ones. But in the detail performance of problem solving, the former was different from the latter in respect with using the design of general solving procedure. (4) The basic problem spaces by the item analysis were divided into two classes. One was the problem space by using Qualitative approach in problem solving, and the other was one by using Quantitative approach. As novices in physics problem solving, most of the students used the problem space by using the Quantitative approach.

  • PDF

물리 문제 해결 과정에서의 학생들의 사고 과정에 관한 연구 (A Study on Students' Thinking Processes in Solving Physics Problems)

  • 박학규;권재술
    • 한국과학교육학회지
    • /
    • 제14권1호
    • /
    • pp.85-102
    • /
    • 1994
  • The purpose of this study was to analyze students' physics problem solving processes and to find the patterns of their problem spaces when high school and university students solved the physics problems. A total of 51 students in a high school and in two universities participated in this study. Their thinking processes in solving 5 physics problems on electric circuit were recorded by using 'thinking aloud' method and were transferal into protocols. 'The protocols were analyzed by the coding system of problem solving process. One of the major theoretical contributions of the computer simulation approach to problem solving is the idea of problem space. Such a concept of problem space was applied to physics problems on electric circuit in this study, and students' protocols were analyzed by the basic problem spaces which were made up from the item analysis by the researcher. The results are as follows: 1) On the average 4.0 test items among 5 ones were solved successfully by all subjects, and all of the items were solved correctly by only 19 persons among all of them. 2) In regard to the general steps of problem solving process, there was little difference for each item between the good solvers and the poor ones. But according to the degree of difficulty of task there was a good deal of difference. For a complex problem all of 4 steps were used by most of students, but for a simple one only 3 steps except evaluating step were used by most of them. 3) It was found in this study that most of students used mainly the microscopic approach, that is, a method of applying Ohm's law on electric circuit simply and immediately, not using the properties of electric circuits. And also it was observed that most of students used the soloing tom below, that is, a solving path in which they were the first to calculate physical Quantities of circuit elements, before they caught hold of the meaning of the given problem regardless of the degree of difficulty.

  • PDF