• Title/Summary/Keyword: Pool flow regime

Search Result 14, Processing Time 0.019 seconds

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

An Experimental Study on the Effects of ...an Inserted Coil on Flow Patterns pd. Beat Transport Performances for a Horizontal Rotating Heat Pipe

  • Lee, Jin-Sung;Kim, Chul-Ju;Kim, Bong-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.50-61
    • /
    • 2000
  • The effects of an inserted coil on flow . patterns and heat transfer performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low rpm(less than 1,000rpm), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing rpm. The pumping effects for RHP with an inserted coil resulted in the enhancement in both condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher rpm(above 1,000-1,200) with the transition of flow regime to annular flow.

  • PDF

A Visual on Study on Nucleate Boiling Phenomena in a Closed Two-Phase Thermosyphon (밀폐형 2상 열사이폰내의 비등현상에 관한 가시화 연구)

  • 김철주;강환국;오광헌
    • Journal of Energy Engineering
    • /
    • v.4 no.2
    • /
    • pp.261-269
    • /
    • 1995
  • 본 연구에서는 밀폐형 2상 열사이폰의 액체 Pool에서 발생하는 핵비등현상과 유동영역에 대해 가시화 방법으로 연구하였다. 실험용 열사이폰은 스텐레스와 유리관을 이용하여 제작하였으며, 열공급은 증발부 주위에 설치된 유도 가열용 코일에 고주파를 가함으로써 스텐레스 외면에 발열이 일어나도록 하였다. 이에 따른 결과는 다음과 같다. 실험용 열사이폰은 고주파 가열등 열사이폰의 작동성능을 저해하는 여러 요인들이 포함되어 있었으나, 실험결과 이러한 문제는 실험 내용에 영향을 미칠만큼 크게 나타나지 않았다. 열속과 상당압력의 범위는 각각2$m^2$, 0.1

  • PDF

Investigation of flow-regime characteristics in a sloshing pool with mixed-size solid particles

  • Cheng, Songbai;Jin, Wenhui;Qin, Yitong;Zeng, Xiangchu;Wen, Junlang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.925-936
    • /
    • 2020
  • To ascertain the characteristics of pool sloshing behavior that might be encountered during a core disruptive accident of sodium-cooled fast reactors, in our earlier work several series of experiments were conducted under various scenarios including the condition with mono-sized solid particles. It is found that under the particle-bed condition, three typical flow regimes (namely the bubble-impulsion dominant regime, the transitional regime and the bed-inertia dominant regime) could be identified and a flow-regime model (base model) has been even successfully established to estimate the regime transition. In this study, aimed to further understand this behavior at more realistic particle-bed conditions, a series of simulated experiments is newly carried out using mixed-size particles. Through analyses, it is verified that for present scenario, by applying the area mean diameter, our previously-developed base model can provide the most appropriate predictive results among the various effective diameters. To predict the regime transition with a form of extension scheme, a correction factor which is based on the volume-mean diameter and the degree of convergence in particle-size distribution is suggested and validated. The conducted analyses in this work also indicate that under certain conditions, the potential separation between different particle components might exist during the sloshing process.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

A Study on the Internal Flow Patterns and Heat Transfer Characteristics for a Cylindrical Rotating Heat Pipe (원통형 회전 히트파이프의 내부 유동 및 열전달 특성에 관한 연구)

  • Lee, Jin Sung;Lee, Jae Jun;Kim, Chul Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1217-1228
    • /
    • 1998
  • In order to elucidate the operational characteristics of rotating heat pipes, the internal flow patterns and heat transfer performance are investigated. Flow patterns and its transition are studied with various rotational speeds by visualizing flows established inside a rotating tube. To verify those results of analysis, 2 heat pipes of the same geometries but fill charge rates of 7, 30% were manufactured and submitted to operating tests. Comparison of experimental results on heat transfer rate show a fairly good agreement with the analytical results. The analysis reveals that the optimum charge ratio is ranged in 4~7% depending on the quantity of thermal loads. but the heat pipe with 7% of fill charge ratio reached dry-out limitation at heat flux of $q^{{\prime}{\prime}}=6.2kW/m^2$ lower than that of analytic results. Transition of flow regime was well related to the correlation by Semena & Khmelev on transient centrifugal Froude Number Frc. But hysteresis phenomenon was observed in transition of flow regime, when the rotational speed was stepwisely changed in the way to undergo 1 cycle.

A study on the pulse boiling occurring inside the liquid pool of a closed two-phase thermosyphon (밀폐형 2상 열사이폰의 Pool 내부 Pulse Boiling에 관한 연구)

  • Kim, Cheol-Ju;Mun, Seok-Hwan;Gang, Hwan-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1254-1261
    • /
    • 1997
  • Pulse boiling, the unsteady periodic boiling phenomenon appearing in the evaporator of thermosyphons was investigated by many researchers. In the present study investigations were conducted to examine the evolution of flow patterns at the evaporator, and changes in thermodynamic state that each of liquid pool and vapor experiences through 1 cycle of pulse boiling process. For wall and liquid pool the degree of superheat for the onset of nucleation was examined. It revealed that the degree of superheat increased with the increase of pulse period, reaching to 16.5 deg.C and 23 deg.C for liquid pool and evaporator wall respectively at .tau.=80 sec. The data on flow patterns obtained through series of operation tests were plotted in the coordinates of heat flux and vapor pressure to get a regime map. Further this map could be used to figure out the conditions of pulse boiling for a thermosyphon.

A Dry-Spot Model for the Prediction of Critical Heat Flux in Water Boiling in Bubbly Flow Regime

  • Ha, Sang-Jun;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.546-551
    • /
    • 1997
  • This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling.

  • PDF

Review of Steam Jet Condensation in a Water Pool (수조내 증기제트 응축현상 제고찰)

  • 김연식;송철화;박춘경
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.74-83
    • /
    • 2003
  • In the advanced nuclear power plants including APR1400, the SDVS (Safety Depressurization and Vent System) is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW (Total Loss of Feedwater), the POSRV (Power Operated Safety Relief Value) located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow.

Knowledge from recent investigations on sloshing motion in a liquid pool with solid particles for severe accident analyses of sodium-cooled fast reactor

  • Xu, Ruicong;Cheng, Songbai;Li, Shuo;Cheng, Hui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.589-600
    • /
    • 2022
  • Investigations on the molten-pool sloshing behavior are of essential value for improving nuclear safety evaluation of Core Disruptive Accidents (CDA) that would be possibly encountered for Sodium-cooled Fast Reactors (SFR). This paper is aimed at synthesizing the knowledge from our recent studies on molten-pool sloshing behavior with solid particles conducted at the Sun Yat-sen University. To better visualize and clarify the mechanism and characteristics of sloshing induced by local Fuel-Coolant Interaction (FCI), experiments were performed with various parameters by injecting nitrogen gas into a 2-dimensional liquid pool with accumulated solid particles. It was confirmed that under different particle-bed conditions, three representative flow regimes (i.e. the bubble-impulsion dominant, transitional and bed-inertia dominant regimes) are identifiable. Aimed at predicting the regime transitions during sloshing process, a predictive empirical model along with a regime map was proposed on the basis of experiments using single-sized spherical solid particles, and then was extended for covering more complex particle conditions (e.g. non-spherical, mixed-sized and mixed-density spherical particle conditions). To obtain more comprehensive understandings and verify the applicability and reliability of the predictive model under more realistic conditions (e.g. large-scale 3-dimensional condition), further experimental and modeling studies are also being prepared under other more complicated actual conditions.