• Title/Summary/Keyword: Pool Fire

Search Result 157, Processing Time 0.025 seconds

A Study on Characteristics of Fire Temperature and Concentration of Toxic Gases while the Door Opening or Closed on Multi-layered Construction (복층건물의 출입문 개방여부에 따른 화재온도분포 및 독성가스 농도 변화특성에 관한 연구)

  • Lee, Jungyun;Kim, Jeonghun;Kim, Eungsik;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • In S. Korea, recently, building fire accidents of residential accommodations or recreational facilities have taken place more frequently than before. Among various building constructions, Multi-layered structure, such as office-residential complex, are mostly made in S. korea. $O_2$, $CO_2$, CO, $NO_x$, $SO_x$, and HCl, these gases has toxic hazard and harmful for human body. And it is predicted that different concentration of released gases from diesel pool fire with upper and lower layer. Therefore, this study reports the fire characteristics of Multi-layered structure by analyzing the fire behavior and concentration of combustion gases of a experimental compartment via real scale fire experiment, in order to predict risks and secure safety for similar fire accidents.

An Experimental Study of Critical Velocity in Sloping Tunnel Fires (경사 터널내 화재시 임계속도에 관한 실험적 연구)

  • 이성룡;김충익;유홍선;김혁순;전명배
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2004
  • In this study, reduced-scale experiments were conducted to analyze an effect of tunnel slope on critical velocity. The 1/20 scale experiments were carried out under the Froude scaling using ethanol pool fire. Square pools ranging from 2.47 to 12.30㎾ were used experiments. Critical velocity varied with one-fourth power of the heat release rate. As the slope of the tunnel increases the critical velocity comes to be fast due to the increase of the chimney effect.

A Study on Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.294-299
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading with the rescue stations. Experiments for tunnel fires were carried out for n-heptane pool em at different fire locations, and the heat release rates (HRR) were obtained by addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

Experimental Study on the Designed Ventilation Effect on the Smoke Movement at Rescue Station fire in Railway Tunnel (터널 내 화재발생시 구난역 내의 연기 거동에 미치는 설계된 환기 영향에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.163-167
    • /
    • 2008
  • In this study, the 1/35 reduced-scale model experiment were conducted to investigate designed ventilation effect on the smoke movement at rescue station fire in railway tunnel. A model tunnel with 2 mm thick, 10 m long, 0.19 m high and 0.26 m was made by using Froude number scaling law. The cross-passages installing escape door at the center were connected between incident tunnel and rescue tunnel. The n-heptane pool fires with heat release rate 698.97W were used as fire source. The fire source was located at the center and portal of incident tunnel as worst case. A operating ventilation system extracted smoke amount of 0.015 cms(cubic meters per second). The smoke temperature and CO gas concentration in cross-passage were measured to verify designed ventilation system. The result showed that, at center fire case without ventilation, smoke did not propagate to rescues station. In portal fire case, smoke spreaded to rescues station without ventilation. But smoke did not propagated to rescues station with designed ventilation.

  • PDF

A Study on the Extinguishing Performance of Water Mist with Additives (첨가제가 혼합된 미세물분무의 소화성능에 관한 연구)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Halogen-based fire suppressing agents have environmental problems because they cause the stratospheric ozone depletion and globe warming. Hence, fire suppression system using fine water mist became the center of interest as a substitution of halon. As a study about this, it is in progress to make the optimum droplet size by using water mist nozzles and to improve the extinguishing performance of water mist by using additives. Before this study, the extinguishing time of ethanol and n-heptane pool fire was measured with changing of water mist droplet size, flow density, discharge pressure, and fire size. In this study, on adding the additives to improve physical and chemical extinguishing performance of water mist, the extinguishing performance would evaluate and the optimum condition would find out. As a result, in case of ethanol pan 1 pool fire, the extinguishing time of the water mist by adding of 2.5 wt% NaCl and 0.3% AFFF got shorter 27% and 60% than the pure water mist. Adding of AFFF was to decrease the flame temperature by forming thin film on the fuel surface and to decrease the evaporation of n-heptane fuel. In case of NaCl, alkali salt crystals showed on the flame surface.

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

THE EXAMINATION OF ACCURACY OF FIRE-DRIVEN FLOW SIMULATION IN TUNNEL EQUIPPED WITH VENTILATION (환기가 있는 터널에서의 화재유동 해석의 정확성에 대한 고찰)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Jung, Woo-Sung
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical methods are applied to simulate the smoke behavior in a ventilated tunnel using large eddy simulation (LES) which is incorporated in FDS (Fire Dynamics Simulator) with proper combustion and radiation model. In this study, present numerical results are compared with data obtained from experiments on pool fires in a ventilated tunnel. The model tunnel is $182m(L){\times}5.4m(W){\times}2.4m(H)$. Two fire scenarios with different ventilation rates are considered with two different fire strengths. The present results are analyzed with those from LES without combustion and radiation model and from RANS ($\kappa-\epsilon$) model as well. Temperature distributions caused by fire in tunnel are compared with each other. It is found that thermal stratification and smoke back-layer can be predicted by FDS and the temperature predictions by FDS show better results than LES without combustion and radiation model. The FDS solver, however, failed to predict correct flow pattern when the high ventilation rate is considered in tunnel because of the defects in the tunnel-inlet turbulence and the near-wall turbulence.

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널화재시 자연환기에 의한 연기거동에 관한 실험적 연구)

  • 김충익;유홍선;이성룡;박현태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with roof vent. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fire ranging from 7.3 to 15.4 cm in diameter with total heat release rate from 1.0 to 8.46kw. In case of 1 m high vent, smoke front reached to the tunnel exit at about 16 sec delayed with ventilation. The delay time grew longer with the vent height. The temperature after the vent was lower than that without the vent. The exit temperature declined maximum of $20^{\circ}C$ after passing the vent. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of the tunnel through the visualized smoke now by a laser sheet and the digital camcorder.

The coflow effects on the flame stability of Heptane pool fire (헵탄 풀화재에서 화염안정성에 관한 주위류 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.258-261
    • /
    • 2012
  • 풀화재에서 화염화염진동은 주위공기와의 밀도차에 의한 부력효과에 기인하여 주로 발생한다. 본 연구는 풀화재의 화염불안정성에 대해 산화제 유속 및 농도 변화에 따른 효과를 검토하기 위하여 컵버너 실험을 수행하였다. 실험결과는 산화제의 농도를 변화시켰을 경우에는 산화제의 불활성기체의 농도가 증가할수록 청염의 길이가 길어지고 컵버너 끝단으로부터 부상되는 것이 관찰된다. 한편, 산화제의 유속이 증가함에 따른 진동주파수가 감소함을 보인다. 이는 무차원 변수로 표현되는 주파수와 부력의 관계로 도시하였을 때 다양한 속도스케일을 사용할 수 있었지만, 연료와 산화제의 유속차로 정의되는 특성속도인 경우에 정지되어 있는 공기중에서의 풀화재 진동과 일치하는 관계식을 얻을 수 있었다. 그리고 진동주파수는 산화제 희석율과는 특정한 관계를 보이지 않는데 이는 국부적 화염구조와 연관성을 가지기 때문으로 판단된다.

  • PDF