• Title/Summary/Keyword: Ponding

Search Result 78, Processing Time 0.032 seconds

An experimental study on durability evaluation of the concrete applied nano level inorganic polymer based coatings (나노합성 무기질 폴리머계 표면처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Baek Jong-Myeong;Kim Eun-Kyeum
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1014-1020
    • /
    • 2004
  • In this study, durability of the nano-level inorganic polymer based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, chloride penetration test, accelerating carbonation test, freezing and thawing test, and sulfate ponding test are conducted. As the result of this study, concrete applied nano-level inorganic polymer based coatings has a much higher resistance to the ingress of chloride ion, carbon dioxide, moisture and aggressive acid than plain concrete and epoxy resin based paint by means of crosslinking three-dimensional structure with concrete structure.

  • PDF

Surficial Stability Evaluation of Homogeneous Slopes Considering Rainfall Characteristics (강우특성을 고려한 사면의 표면파괴에 대한 안정성 평가)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.107-116
    • /
    • 2000
  • 강우에 의한 얕은 사면파괴는 우리 나라에서 흔히 볼수 있는 사면파괴의 형태이다. 본 연구에서는 재현기간에 따른 강우강도와 지속시간을 고려한 한계평형법에 의하여 이러한 얕은 사면파괴의 가능성을 평가하기 위함 방법에 대하여 논의하였다. 이를 위해 일차원 침투모델인 Green-Ampt 모델에 바탕을 둔 두 방법을 고려하였다. 즉 침투능에 따른 침투깊이를 산정하는 Pradel과 Raad의 방법과 일정한(uniform) 강우강도가 작용할 경우 폰딩(ponding)에 대해 해를 주는 Mein과 Larson의 방법을 고려하여 함수특성이 알려진 화강풍화토사면에 적용하였다. 연구결과에 의하며 Pradel과 Raad 방법은 실제 적용된 강우강도가 아닌 침투능을 바탕으로 침투깊이를 산정하므로 Mein과 Larson 방법에 비해 보수적인 사면안정 해석결과를 예측한다.

  • PDF

Analyses on the Impact of Plastic Deformation on Change of the Road Surface Condition (소성변형 정도를 고려한 시간전개에 따른 노면상태 변화 분석)

  • SON, Young Tae;PARK, Sang-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.3
    • /
    • pp.216-228
    • /
    • 2018
  • In this study analyzed the ponding changing of plastic deformation section follwed time development to apply weather, geometry and traffic data in additon to time development to improve road management service and safety of roads during or after rain. After We selected an 8.3km section of old national highway the Seongnam-Janghowon section and created a three-demensional surface of terrain through the numerical transformantion of design drawing data, with reflection the linear data of the same coordinate system in order to describe more realistic roads, we design additional structures with shading above roads. The altitude and azimuth of the sun were calculated and set based on the longitude and latitude data of the survey line for the analysis of the sun rate, and the daylight impact zone was visualized by setting the shaded time to an interval of 1 hour and the shade rate of the corresponding section. In addition, the evaporation volume calculated from weather data such as temperature, humidity, radiant energy, and road temperature analyzes together, it will use the way of a safer and more efficient road management as grasping the ponding changing more efficent in time development.

Assessment of Water Distribution and Irrigation Efficiency in Agricultural Reservoirs using SWMM Model (SWMM 모형을 이용한 농업용 저수지 용수분배 모의 및 관개효율 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • The management of agricultural water can be divided into management of agricultural infrastructure and operation to determine the timing and quantity of water supply. The target of water management is classified as water-supply facilities, such as reservoirs, irrigation water supply, sluice gate control, and farmland. In the case of agricultural drought, there is a need for water supply capacity in reservoirs and for drought assessment in paddy fields that receive water from reservoirs. Therefore, it is necessary to analyze the water supply amount from intake capacity to irrigation canal network. The analysis of the irrigation canal network should be considered for efficient operation and planning concerning optimized irrigation and water allocation. In this study, we applied a hydraulic analysis model for agricultural irrigation networks by adding the functions of irrigation canal network analysis using the SWMM (Storm Water Management Model) module and actual irrigation water supply log data from May to August during 2015-2019 years in Sinsong reservoir. The irrigation satisfaction of ponding depth in paddy fields was analyzed through the ratio of the number of days the target ponding depth was reached for each fields. This hydraulic model can assist with accurate irrigation scheduling based on its simulation results. The results of evaluating the irrigation efficiency of water supply can be used for efficient water distribution and management during the drought events.

Suitability Evaluation of Containment Area Design Considering Suspended Solid Sedimentation (부유물 침전을 고려한 준설투기장 설계의 적합성 평가)

  • Jee, Sunghyun;Kim, Chanki;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.41-48
    • /
    • 2010
  • In this study, grain size distribution of dredged soil and suspended solid distribution of supernatant in containment area were measured and compared with design prediction for suitability evaluation on prediction of suspended solid concentration of supernatant in conventional design of containment area. In addition to that, relationship were also analyzed between current velocity and suspended solid concentration of supernatant. Evaluation results show a relatively good agreement between field measurement and design prediction. On contrast, field measurement and design prediction show a quite different value each other in the early stage of dredging or at a point that current velocity increases. It is believed that this is due to that conventional design method of containment area does not account for ponding depth and current velocity which change sensitively with dredging period. Since current velocity and distribution of suspended solid concentration measured simultaneously show a similar trend, it is observed that there exists a close relationship between current velocity and distribution of suspended solid concentration. Therefore, a new design method for containment area, which can consider sedimentation of suspended solid that changes with interface height of dredged soil, ponding depth, current speed of supernatant, is necessary in order to predict the situation change of containment area more precisely.

산지유역의 초과우량 추정 모형

  • 남선우;최은호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.49-52
    • /
    • 1990
  • 강우강도가 큰 집중호우가 지표면에 도달하게 되면 강우량중 상당 부분이 수문학적 손실성분인 침수, 증발산, 차단 및 저류등으로 시간에 따라 분포된다. 이 가운데 지표면에 분포된 식생계 및 낙엽등에 의한 차단(canopy interception effect)과, 지표가 포화시의 증발산(wetted environmental evapotranspiration) 및 각종 저류, 즉 지표면 저류(depression storage), 지표토양층에의 저류(retention storage) 성분 등을 들 수 있으며 이들 각 손실성분은 직접유출로 나타나는 초과우량의 발생시간을 지체시켜 주는 역할을 하나 차단성분 및 저류성분은 시간이 경과함에 따라 결국은 증발산 또는 침투성분으로 흡수된다. 따라서 침투성분은 초과우량 추정에 매우 큰 영향을 줄 뿐 아니라 지표면 아래의 흙의 변형을 야기시키며, 중간유출 및 지하수유출에 기여 한다. 대부분의 호우사상은 강우초기에 강우강도가 지표 흙의 침수계수(hydraulic conductivity)보다 작기 때문에 모두 각 손실성분에 의해 손실되며, 강우강도가 점차 커져 침수능을 초과하면 지표면에 순간적으로 물이 고이게 되는데 이것을 지표심수(surface ponding)라하고, 강우시작부터 이 때까지가 침수시간(ponding time)이 된다. 이 지표침수가 나타나는 순간이 곧 직접유출 시작 시간으로 볼 수 있을 뿐 아니라, 침수시간은 지표면의 물수지면에서 볼 때 초기손실량 및 침수율 결정에 중요한 인자가 된다. 본 연구에서는 각 손실 성분별로 유역의 제반 특성을 고려하여 구한 매개변수로부터 시간에 대한 손실율을 결정하여 산지 하천유역에 발생하는 부정강우사상(unsteady rainfall)의 초과우량을 추정하는 모델을 유도하였다. 대상유역으로는 현재 건설부에서 수행하고 있는 국제수문개발계획(IHP) 대표시험유역 가운데 평창강 수계내의 장평유역으로서, 본 유역은 자기 우량계 및 자기 수위계가 운용되고 있고, 인접 대관령 측후소로부터 기상자료를 획득, 이용할 수 있는 비교적 분석에 양호한 조건을 지닌 유역이다. 모델의 유도 과정은 대상유역 식생계로 피복된 산지유역임으로, 식생차단 저류효과를 고려해서 지표면의 흙에 도달되는 순강우주상도를 얻고 이로부터 침수시간 및 침투율을 결정해서 초과우량을 산정하는 모델을 유도하였다. 강우 지속시간내 즉, 유역이 완전 포화시의 증발산율의 결정은 Morton 모델로부터, 침수시간 및 침투율 결정은 Green-Ampt 방정식을 부정강우사상에 적용할 수 있도록 수정된 모델을 사용하였으며, 분석에 이용된 호우는 1986 ~ 1987년도 발생된 호우사상 가운데 강우강도 및 총 강우량이 비교적 큰 7개 강우사상을 선정하였다. 각 호우사상별로 손실율울 지표면에서 물수지개념을 이용하여 계산하고 산술지상에 구성시킨 결과는 다음 그림과 같다. 이 그림에서 굵은 실선으로 나타낸 곡선(B. L. R)은 각 손실을 곡선을 시간축에 따라 산술평균한 대표손실율곡선이다. 이 대표손실율곡선은 역지수함수형으로서 곡선식의 유도는 회기분석을 이용하였다. 초과우량 주상도를 얻기 위하여 이 대표손실을 곡선을 관측 강우주상도에 적용시켜 본 결과 식생계에 의한 차단 저류율은 약 6mm/hr 정도인 것으로 나타났으며, 이로 인한 침수시간 지체효과는 1~3시간 정도로서 비교적 그 영향이 큼을 알았다. 또한 각 호우사상별 침수시간 계산 결과 그 변동이 큰 것으로 나타났는데 이는 초기 강우강도에 민감하기 때문인 것으로 판단되낟. 한편 유역 포화시의 증발산율은 우기의 기상자료를 이용하여 구한 결과 0.05 - 0.10 mm/hr 의 범위로서 이로 인한 강우손실량은 큰 의미가 없음을 알았다.

  • PDF

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

Corrosion Evaluation of Epoxy-Coated Bars in Chloride Contaminated Concrete Using Linear Polarization Tests

  • Choi, Oan-Chul;Jung, Si-Young;Park, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.3-9
    • /
    • 2006
  • Five slab specimens with predefined cracks are examined to evaluate the corrosion behavior of epoxy-coated bars in chloride contaminated concrete, using linear polarization method. The test specimens were subjected to alternating weekly cycles of ponding in a salt solution and drying for 48 weeks. Test results show that the current density of the specimen of normal steel bars becomes 0.715 ${\mu}A/cm^2$ indicating that the steel bars are in moderate or high corrosion condition. However, the corrosion rates of the specimens with damaged epoxy-coated bars are significantly below 0.1 ${\mu}A/cm^2$ and the bars appears to be in passive condition. The damaged epoxy-coated bars with a corrosion inhibitor of calcium nitrite showed a corrosion rate of 0.110 ${\mu}m/year$ or 56 percents of the corrosion rate of damaged epoxy-coated specimen without such an inhibitor, 0.195 ${\mu}m/year$. However, the corrosion rates of specimens containing the other two corrosion inhibitors, a combination of amines and esters or mixtures of organic alkenyl dicarboxyl acid salts are quite equivalent to the control specimen. The research technique of linear polarization resistance method has proven itself to be useful in measuring corrosion rates of reinforcement in concrete.

Infiltration characteristics and hydraulic conductivity of weathered unsaturated soils

  • Song, Young-Suk;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Laboratory experiments were conducted with two different soil conditions to investigate rainfall infiltration characteristics. The soil layer materials that were tested were weathered granite soil and weathered gneiss soil. Artificial rainfall of 80 mm/hr was reproduced through the use of a rainfall device, and the volumetric water content and matric suction were measured. In the case of the granite soil, the saturation velocity and the moving direction of the wetting front were fast and upward, respectively, whereas in the case of the weathered gneiss soil, the velocity and direction were slow and downward, respectively. Rainfall penetrated and saturated from the bottom to the top as the hydraulic conductivity of the granite soil was higher than the infiltration capacity of the artificial rainfall. In contrast, as the hydraulic conductivity of the gneiss soil was lower than the infiltration capacity of the rainfall, ponding occurred on the surface: part of the rainfall first infiltrated, with the remaining rainfall subsequently flowing out. The unsaturated hydraulic conductivity function of weathered soils was determined and analyzed with matric suction and the effective degree of saturation.

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF