• Title/Summary/Keyword: Pond-wetland system

Search Result 46, Processing Time 0.025 seconds

Application of a Pond System to Korea for Treatment and Recycling of Wastewater (하수 처리 및 재활용 연못시스템의 국내 응용)

  • Yang, Hongmo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.108-117
    • /
    • 1995
  • The applicability to Korea is examined of a pond system which treats and recycles wastewaters. Air temperature and solar radiation of the pond systems at Corinne, Utah, and Eudora, Kansas, which are located in temperate regions of the U.S., are compared with those of Kimpo lying in the mid-western part of Korea. Analyzed are also $BOD_5$ and SS concentrations, algal concentrations, pH levels, and water temperature of the two systems. Air temperature of Kimpo is quite similar to that of the two systems, and solar radiation of Kimpo is more conducive than that of the systems to the growth of algae during summer. Analysis of $BOD_5$ and SS concentrations in the final effluent of the systems shows that they meet the secondary treatment standards. The study demonstrates that wastewater treatment pond system which is similar in design to the systems can be reliably utilized at Kimpo, Korea. A model is proposed which can integrate a pond system with aquaculture and agriculture.

  • PDF

Community Characteristics of Benthic Macroinvertebrates according to Growth Environment at Rural Palustrine Wetland (농촌지역 소택형습지의 생육환경에 따른 저서성대형무척추동물 군집 특성)

  • Son, Jin-Kwan;Kim, Nam-Choon;Kim, Mi-Heui;Kang, Banghun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.129-144
    • /
    • 2012
  • This study was conducted to understand the community characteristics of benthic macroinvertebrates according to Growth Environment at 6 Palustrine Wetlands in a rural area. As growth environment factors, size, water depth, water inlet and water outlet, land-use and water environment was analyzed. Two years' quantitative collection of benthic macroinvertebrate was carried out, and it executed community analysis and ESB index calculation and also carried out twinspan, MDS and correlation analysis. As a result, the collected benthic macroinvertebrate was 1254 individuals with 3 Phylums, 6 Classes, 14 Orders, 35 Families, 52 Genera and 61 Species. Odonata and Coenagreionidae had the highest species and individuals. Dominance Index was 0.252~0.698, Diversity Index was 1.661~2.902, Evenness Index was 0.414~0.724, and Species Richness Index was 1.990~6.224. As a result of community analysis, when correlation analysis was executed, Dominance Index had the opposite tendency with Diversity Index and Evenness Index, which had the same tendency with the previous studies. When ESB Index was calculated, Grade 2 (polluted) had the highest species with 48 species (78.7%). It is determined from the Environmental quality evaluation and saprobity evaluation result according to ESB index that there is a need to revise environmental evaluation system more specifically. As a result of MDS analysis, the subject spots A and D had the highest similarity, and the subject spot E and D had a relatively high similarity. The life environment that is the closest related with species diversity is estimated by the land-use. As for number of Individual, it seems to have the closest relation with inlet, which is to be determined as a characteristics of Palustrine Wetland. Through such investigation, this study is expected to be utilized for various types of habitats including ecological pond and to be utilized for the increase of species diversity in rural areas.

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

Seasonal Performance of Constructed Wetland for Nonpoint Source Pollution Control (비점오염원 제어를 위한 인공습지의 계절변화에 따른 처리효율 평가)

  • Ham, Jong-Hwa;Han, Jung-Yoon;Kim, Hyung-Chul;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.471-480
    • /
    • 2006
  • The field scale experiment was performed to examine the performance of the constructed wetland for nonpoint source (NPS) pollution loading reduction. Four sets (each set of 0.88 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland systems. Water depth was maintained at 0.3-0.5 m and hydraulic retention time was managed to about 2-5 days; emergent plants were allowed to grow in the wetland. The wetland effluent concentrations of $BOD_5$, TSS, and T-N were higher in winter than in the growing season excepting the T-P, and effluent $BOD_5$ concentration was higher than influents in winter. Mass retention of T-N and T-P was stable throughout the year, whereas mass retention of $BOD_5$ and TSS was decreased in winter. $BOD_5$, TSS, T-N, and T-P performance of the experi-mental system was compared with the existing database (North American Treatment Wetland Database), and was within the range of general system performance. From the first-order analysis, T-P was virtually not temperature dependent, and $BOD_5$ and TSS were more temperature dependent than T-N. Overall, the wetland system was found to be an adequate alternative for treating polluted stream water with stable removal efficiency and recommended as a NPS control measures.

NO3-N Removal of A Reed Wetland Cell Constructed for Purifying Effluent from A Night Soil Treatment Plant During Its Initial Operating Stage (분뇨처리장 방류수정화 갈대습지셀의 초기운영단계 질산성질소 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.100-106
    • /
    • 2004
  • $NO^3$-N removal was examined from July 2002 to December 2002 of a surface-flow constructed treatment wetland cell, which was a part of a treatment wetland system composed of four wetland cells and one distribution pond. The system was established on rice paddy near the Kohung Estuarine Lake located at the southern part of the Korean Peninsula. The lake and the paddy were formed by a salt marsh reclamation project. Effluent from a secondary-level treatment plant was funneled into the system. The investigated cell was created in June 2002. Its dimensions were 87 m in length and 14 m in width. It had an open water zone at its center, which was equivalent to 10 percent of its total area. Reeds(Phragmites australis) were transplanted from natural wetlands into the cell and their stems were cut at about 40 cm height from their bottom ends. Average 25 $m^3$/day of effluent from the plant was funneled into the cell by gravity flow and average 24.2$m^3$/day of its treated effluent was discharged into the Sinyang Stream flowing into the lake. Its water depth was maintained about 0.2 m and its hydraulic detention time averaged 5.2 days. The average height of the reed stems was 45.2 cm in July 2002 and 80.5 cm in September 2002. The number of stems averaged 40.3 stems/$m^2$ in July 2002 and 74.5 stems/$m^2$ in September 2002. The reeds were established initially well. $NO_3$-N loading rate of influent and effluent averaged 173.7 and $93.5mg/m2{\cdot}day$, respectively. Removal of $NO_3$-N averaged $80.2mg/m2{\cdot}day$ and its removal rate by mass was about 50 %. Considering the initial operation of the cell and the inclusion of the cold months of November and December in the analysis period, the $NO_3$-N removal rate was good.

Nitrate Removal of a Cattail Wetland Cell Purifying Effluent from a Secondary-Level Treatment Plant During Its Initial Operating Stage (2차처리장 방류수 정화 부들습지셀의 초기운영단계 질산성질소 제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2004
  • Nitrate removal was examined from May to October 2003 of a surface flow treatment wetland cell, which was a part of a treatment wetland system composed of four wetland cells and a distribution pond The system was established on rice paddy near the Kohung Estuarine Lake located in the southern part of the Korean Peninsula. Effluent from a secondary-level night soil treatment plant was funneled into the system. The investigated cell, 87 m in length and 14 m in width, was created in April 2003. An open water was designed at its center, which was equivalent to 10 percent of its total area. Cattails (Typha angustifolia) were transplanted from natural wetlands into the cell and their stems were cut at about 40cm height from their bottom ends. Average $25.0\;m^3/day$ of effluent from the treatment plant was funneled into the cell by gravity flow and average $24.1\;m^3/day$ of its treated effluent was discharged into the Sinyang Stream flowing into the lake. Its water depth was maintained about 0.2 m and its hydraulic detention time averaged 5.2 days. Average height of the cattail stems was 42.5 cm in May 2M3 and 117.7 cm in September 2003. The number of stems averaged $9.5\;stems/m^2$ in May 2003 and $16.4\;stems/m^2$ in September 2003. The growth of cattails was good. Temperature of influent and effluent averaged 25.9 and $26.7^{\circ}C$, respectively. $NO_3$-N loading rate of influent and effluent averaged 176.67 and $88.09\;mg/m^2\;day$, respectively. Removal of rf03-N averaged $89.58\;mg/m^2\;day$ and its removal rate by mass was about 50%. Considering its initial operating stage in which cattail rhizomes and litter layer on the bottom were not Idly established, the $NO_3$-N removal rate of the cell was rather good.

Problems and improvement methods of passive treatment systems for acid mine drainage in Korea

  • Ji, Sang-Woo;Ko, Ju-In;Kim, Sun-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.504-510
    • /
    • 2003
  • This study has been carried out to evaluate the passive treatment systems for acid mine drainage in Korea and to suggest, if possible, the method for the improvement. 35 passive treatment systems in 27 mines have been constructed since 1996. SAPS, being the main process, was combined with more than one of processes such as anaerobic wetland, aerobic wetland, and oxidation pond for the construction of passive treatment system. Problems observed during the operation include the poor sulfate removal ratio, overflow, leakage, unusabless of the whole system, and inefficiency. The reasons of the poor sulfate removal ratio are believed that the low temperature during the winter prohibits the SRB activity and HRT for bacterial sulfate reduction is insufficient. An alternative method In Adit Sulfate Reducing System which enables to keep the temperature constant at about $15^{\circ}C$ was suggested. IASRS is the methods of placing the SAPS inside the adit, which enables the temperature around the system constant can be maintained. The experiments using the laboratory scaled model systems made up of four sections showed high efficiencies in pH control and metal removal ratios, but showed still low sulfate removal ratio of about $23\%$ also with high COD at the beginning of the operation.

  • PDF

The Effect of Plant Coverage on the Constructed Wetlands Performance and Development and Management of Macrophyte Communities (식생피도가 인공습지의 질소 및 인 처리효율에 미치는 영향과 습지식물의 조성 및 관리)

  • Ham, Jong-Hwa;Kim, Hyung-Chul;Koo, Won-Seok;Shin, Hyun-Bhum;Yun, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.393-402
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets (each set of 0.88 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at 0.3 ${\sim}$ 0.5 m and hydraulic retention time was managed to about 2 ${\sim}$ 5 days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 90%, even with no plantation, from bare soil surfaces at the initial stage. During the start up period of constructed wetlands, lower water levels should be maintained to avoid flooding newly plants, if wetland plants are to be started from germinating seeds. Effluent T-N concentration in low plant coverage wetland was higher in winter than high plant coverage wetland, whereas no T-P effluent concentration and removal efficiency difference was observed within 15% plant coverage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin (한강수계 비점오염원 저감시설의 생애주기비용 평가)

  • Lee, Soyoung;Maniquiz-Redillas, Marla C.;Lee, Jeong Yong;Mun, Hyunsaing;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.448-455
    • /
    • 2016
  • Diffuse pollution management in Korea initiated by the Ministry of Environment (MOE) resulted to the construction of pilot facilities termed Best Management Practices (BMPs). Twelve BMPs installed for the diffuse pollution management in the Kyung-An Stream were monitored since 2006. Data on the mass loading, removal efficiency, maintenance activities, etc. were gathered and utilized to conduct the evaluation of long-term performance of BMPs. The financial data such as actual construction, design and maintenance cost were also collected to evaluate the lifecycle cost (LCC) of BMPs. In this study, most of the maintenance activity was focused in the aesthetic maintenance that resulted to the annual maintenance cost of the four BMP types was closely similar ranging from 8,483 $/yr for retention pond to 8,888 $/yr infiltration system. The highest LCC were observed in constructed wetland ($418,324) while vegetated system had the lowest LCC ($210,418). LCC of BMPs was not so high as compared with the conventional treatment facility and sewage treatment plant. On the other hand, the relationship of removal efficiency on unit cost for TSS and TN was significant. This study will be used to design the cost effective BMP for diffuse pollution management and become models for LCC analysis.

Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal Coal Mine (일월탄광에서 유출되는 산성광산배수 자연정화시설의 정화 효율 평가 및 침전물의 특성연구)

  • Ryu, Chung Seok;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Artificial precipitation ponds, consisting of three steps of oxidation pond, successive alkalinity producing system (SAPS) and swamp, were constructed for the treatment of the acid mine drainage from the Iwal coal mine. The efficacies of the passive treatment system in terms of neutralization of mine water and removal of dissolved ions were evaluated by the chemical analyses of the water samples. Mine water in the mine adits was acidic, showing the pH value of 2.28-2.42 but the value increased rapidly to 6.17-6.53 in the Oxidation pond. The purification efficiencies for the removal of Al and Fe were 100%, whereas those of $SO_4$, Mg, Ca, and Mn were relatively low of 50%, 40%, 24%, and 59%, respectively. These results indicate a need for application of additional remediation techniques in the passive treatment systems. The precipitates that formed at the bottom of the mine water channels were mainly schwertmannite ($Fe_8O_8(OH)_6SO_4$) and those in the leachate water were 2-line ferrihydrite ($Fe_2O_3{cdot}0.5H_2O$).