• Title/Summary/Keyword: Pond water

Search Result 437, Processing Time 0.024 seconds

Purification Technology in Closed Water like a Reservoir and Pond using Oxygen Solubilized Device and Standardized Microorganism Culture System (산소용해수와 미생물제재를 이용한 호소 및 폐쇄수역의 정화기술)

  • Seo, Seong-nyeo;Kim, Young-taek;Park, Chul-hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.118-124
    • /
    • 2005
  • The oxygen solubilized device(O.S.D) and standardized microorganism culture system is more efficient than physical and chemical purification techniques in closed water. This study was to determine how the O.S.D and standardized culture system is efficient in purification capacity in closed water based on the lab scale and pilot plant. In the batch test, inducing the quantitative results from pilot plant operation condition, removal efficiency of COD and TN were about 48.3% and 35% respectively, while SS and chlorophyll-a were 94.9% and 68.7%. The pilot plant results showed that suspended solid(SS) and chlorophyll-a removal efficiency were 60% and 59% respectively, due to coagulation characteristics by standardized culture. Total nitrogen(TN) and total phosphorus(TP)showed good effect for the purification of target pond water quality from field data. Additionally, released velocity was determined in control condition of $5.31mgPO{_4}^{3-}{\cdot}m^{-2}{\cdot}day^{-1}$ and $2486.8mgCOD{\cdot}m^{-2}{\cdot}day^{-1}$. Otherwise, phosphate and COD reflux in the aeration and microorganism condition was showed $-9.95mgPO{_4}^{3-}{\cdot}m^{-2}{\cdot}day^{-1}$ and $-397.88mgCOD{\cdot}m^{-2}{\cdot}day^{-1}$. This technology is the most effective not only removal of SS and chlorophyll-a but also control of phosphate and COD release which is very important phenomena in evaluating water quality in closed water like a reservoir and pond.

Water Quality Improvement in Estuary using Wetland and Pond (습지와 유수지를 이용한 하구담수호 수질개선)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Moon, Yong-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.377-380
    • /
    • 2002
  • Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. In this study, the field experiment to reduce nonpoint source pollution loadings from agricultural drainage and polluted stream waters using wetland and pond system was performed. The removal rate of $BOD_5$, TSS, TN, TP, and $Chl-{\alpha}$ was 52%, 90%, 56%, 59%, and 81%, respectively. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall the water quality improvement was apparent in wetland and pond system.

  • PDF

Changes in Phytoplankton Community Structure after Floating-Islands Construction at a Small Pond (소규모 연못에서 식물섬 조성 후 식물플랑크톤 군집구조의 변화)

  • Lee, Eun Joo;Lee, Hyo Hye Mi;Kwon, Peter;Suck, Jung Hyun;Ryu, Ji Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The effects of floating islands on the changes in phytoplankton community structure were investigated in a small artificial pond. The floating islands planted with various emergent macrophytes covered 35% of total water surface area of the pond. Total 17 genera and 25 species of phytoplankton were found in the pond, of which Dinophyceae was 1 genera and 1 species, Cyanophyceae 1 genera and 1 species, Bacillariophyceae 6 genera and 8 species, and Chlorophyceae 9 genera and 15 species. Dominant phytoplanktons under floating islands were changed from Aphanizomenon sp. as a Cyanophyceae to Golenkinia radiata, Kirchneriella contorta and Micractinium pusillum as a Chlorophyceae for 56 days after the construction of floating islands on July 24, 2001. The changes of dominant phytoplanktons of the control without floating islands were similar to those under floating islands in July and August, but Aphanizomenon sp. was rapidly increased in the control sites in September. About 99% of the cell number of Aphanizomenon sp. was disappeared for a month after construction of floating islands. Species diversity of phytoplankton under the floating islands of Iris pseudoacorus was higher than those of other macrophytes as well as the control without floating islands. The cell numbers of Cyanophyceae and Chlorophyceae were fewer under the floating islands of I. pseudoacorus than those of other macrophytes. Our results showed that the floating islands could be a useful eco-technique for the control of water bloom by Cyanophyceae and Chlorophyceae in a pond ecosystem.

Changes in BOD, COD, Chlorophyll-a and Solids in Aquaculture Effluent with Various Chemical Treatments

  • Park, Jeonghwan;Daniels, Harry V.
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.49-55
    • /
    • 2017
  • Four chemical treatments with hydrogen peroxide (H2O2), copper sulfate (CuSO4), potassium permanganate (KMnO4) and chlorine (Cl2) were applied to the effluent pond water of a hybrid striped bass saltwater recirculating aquaculture system to compare their oxidation power. Four chemicals were applied at concentrations of 0 (control), 1, 5, 10 and 20 mg/l. An additional concentration of 40 mg/l was included in the chlorine treatment. Water samples from four hybrid striped bass ponds were tested with KMnO4 and Cl2. H2O2 did not reduce any of BOD, COD and chlorophyll-a, and copper sulfate was only effective on chlorophyll-a for the effluent pond. Removal efficiencies for chlorophyll-a by copper sulfate were 19.2%, 37.5%, 54.2% and 74.1% dose-dependently. Potassium permanganate effectively removed the BOD, COD and chlorophyll-a. The COD removal rates in four fish ponds varied from 15.9% to 31.6% at the concentration of 10 mg/l. Interestingly, Cl2 did not reduce the BOD and COD at all, but the BOD and COD instead increased drastically with increasing the Cl2 concentration. The pond water with the highest initial BOD and COD values among the fish ponds tested increased by 350% in the BOD and 150% in the COD at 20 mg/l. Furthermore, Cl2 did not significantly reduce any types of solid matter in this study, while KMnO4 seemed to reduce some extent volatile dissolved solid in the fish pond.

A Development of Simplified Design Method of the Detention Pond for the Reduction of Runoff (우수유출저감용 저류지의 간편설계기법 개발)

  • Lee, Jae-Joon;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.693-700
    • /
    • 2008
  • Detention pond has an important role in peak flow reduction to mitigate flood damage. Design of detention pond is accomplished through the preliminary stage, and design stage in general. New development projects produce increased peak flow and flow amounts. In this case it is necessary to design the detention pond easily and simply. A simplified design method of the detention pond is suggested in this study. Used design variables are peak flow ratio(${\alpha}$) and storage ratio($S_r$). ${\alpha}$ is the peak flow ratio of before and after development of the basin. $S_r$ is a ratio of storage volume to total runoff volume. Applicability of the proposed method was also proved. The simple procedure of detention pond design is proposed in this study.

A study on the determination of location of the detention pond in trunk sewer for reducing runoff amounts (우수유출저감을 위한 간선저류지 위치선정에 관한 연구)

  • Lee, Sung Ho;Yoon, Sei Eui;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • The ability to defend against floods in urban areas was weakened, because the increase in the impervious rate of urban areas due to urbanization and industrialization and the increase in the localized torrential rainfall due to abnormal climate. In order to reduce flood damage in urban areas, various runoff reduction facilities such as detention ponds and infiltration facilities were installed. However, in the case of domestic metropolitan cities, it is difficult to secure land for the installation of storm water reduction facilities and secure the budget for improving the aged pipelines. Therefore, it is necessary to design a storage system (called the detention pond in trunk sewer) that linked the existing drainage system to improve the flood control capacity of the urban area and reduce the budget. In this study, to analyze the effect of reducing runoff amounts according to the volume of the detention pond in trunk sewer, three kinds of virtual watershed (longitudinal, middle, concentration shape) were assumed and the detention pond in trunk sewer was installed at an arbitrary location in the watershed. The volume of the detention pond in trunk sewer was set to 6 cases ($1,000m^3$, $3,000m^3$, $5,000m^3$, $10,000m^3$, $20,000m^3$, $30,000m^3$), and the installation location of the detention pond in trunk sewer was varied to 20%, 40%, 60%, and 80% of the detention pond upstream area to the total watershed area (DUAR). Also, using the results of this study, a graph of the relationship and relational equation between the volume of the detention pond in trunk sewer and the installation location is presented.

Comparison of Nitrogen Removal in Reed Wetlands with and Without Open Water Purifying Effluent from a Treatment Pond (하천수를 정화하는 갈대습지의 개수부에 의한 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • Nitrate($NO_3-N$) and total nitrogen(TN) removal by a reed wetland with open water(Wetland 1) was compared with that of a reed wetland without open water(Wetland 2) from March to October 2002. The two wetlands were 25mL by 6mW. An open water area, 3mL by 6mW was designed at the middle of Wetland 1. Reeds(Phragmites australis) were transplanted into the wetlands in June 2000. Water of Sinyang Stream flowing into the Kohung Estuarine Lake located in the southern part of Korea was pumped into a primary treatment pond, whose effluent was discharged into the secondary pond. Effluent from the secondary pond was funneled into the wetlands. Inflow into the wetlands averaged about 20.0$m^3$/day and their hydraulic retention time was approximately 1.5 days. Average $NO_3-N$ removal by Wetland 1 was 117.61mg/$m^2{\cdot}day$ and that by Wetland 2 was 106.39mg/$m^2{\cdot}day$. $NO_3-N$ removal efficiency of Wetland 1 and 2 was 37% and 34%, respectively. TN removal by Wetlands 1 and 2 averaged 226.80 and 214.54mg/$m^2{\cdot}day$, respectively. TN abatement efficiency of Wetland 1 was 43% and that of Wetland 2 was 40%. $NO_3-N$ removal efficiency of Wetland 1 was significantly higher(p=0.038) than Wetland 2. TN removal efficiency of Wetland 1 was also significantly higher(p=0.044) than Wetland 2. The wetland with open water was more efficient for removal of $NO_3-N$ and TN than one without.

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Nitrate Removal Rate in Cattail Wetland Cells of a Pond-Wetland System for Stream Water Treatment (하천수정화 연못-습지 시스템 부들 습지셀의 초기 질산성질소 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.24-29
    • /
    • 2002
  • Nitrate removal rate in three cattail wetland cells was investigated. They were a part of a pond-wetland system for stream water treatment demonstration. The system was composed of two ponds and six wetland cells. The acreage of each cell was approximately $150m^2$. The earth works for the system were finished from April 2000 to May 2000 and cattails were planted in the three cells in June 2000. Waters of Sinyang Stream flowing into Kohung Estuarine Lake were pumped into a primary pond, whose effluent was discharged into a secondary pond. The reservoir was formed by a tidal marsh reclamation project and located in southern coastal area of Korean Peninsula. Effluents from the secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2000 through January 2001. Inflow and outflow averaged $20.2m^3/day$ and $19.8m^3/day$, respectively. Hydraulic retention time was about 1.6 days. Average influent and effluent nitrate concentration was $1.98mg/{\ell}$, $1.38mg/{\ell}$, respectively. Nitrate removal rate averaged $82.6mg\;m^{-2}\;day^{-1}$. Seasonal changes of nitrate retention rates were closely related to those of wetland cell temperatures. The average nitrate removal rate in the cells was a little lower, compared with that of $125.0mg\;m^{-2}\;day^{-1}$ for the wetlands operating in North America. This could be attributed to the initial stage of the cells and inclusion of three cold months into the seven-month study period. Root rhizosphere in wetland soils and litter-soil layers on cell bottoms could not developed. Increase of standing density of cattails within a few years will establish both root zones suitable for the nitrification of ammonia to nitrates and substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increase of the nitrate retention rate.

Application of a Pond System to Korea for Treatment and Recycling of Wastewater (하수 처리 및 재활용 연못시스템의 국내 응용)

  • Yang, Hongmo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.108-117
    • /
    • 1995
  • The applicability to Korea is examined of a pond system which treats and recycles wastewaters. Air temperature and solar radiation of the pond systems at Corinne, Utah, and Eudora, Kansas, which are located in temperate regions of the U.S., are compared with those of Kimpo lying in the mid-western part of Korea. Analyzed are also $BOD_5$ and SS concentrations, algal concentrations, pH levels, and water temperature of the two systems. Air temperature of Kimpo is quite similar to that of the two systems, and solar radiation of Kimpo is more conducive than that of the systems to the growth of algae during summer. Analysis of $BOD_5$ and SS concentrations in the final effluent of the systems shows that they meet the secondary treatment standards. The study demonstrates that wastewater treatment pond system which is similar in design to the systems can be reliably utilized at Kimpo, Korea. A model is proposed which can integrate a pond system with aquaculture and agriculture.

  • PDF