• Title/Summary/Keyword: Polyurethane Foam

Search Result 357, Processing Time 0.026 seconds

Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel (실리카 에어로겔을 첨가한 폴리머 폼의 기계적 특성)

  • Ahn, Jae-Hyeok;Kim, Jeong-Hyeon;Kim, Jeong-Dae;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.413-418
    • /
    • 2017
  • In the present study, silica-aerogel-polyurethane foams were synthesized to improve the mechanical characteristics and insulation performance of the polyurethane foam applied to a liquefied natural gas carrier at a cryogenic temperature of $-163^{\circ}C$. A silica-aerogel-polyurethane foam bulk was prepared using a homogenizer by varying the weight ratio of the silica aerogel (0, 1, 3, and 5 wt%), while maintaining the contents of the polyol, isocyanate, and blowing agent constant. Compression tests were performed at room and cryogenic temperatures to compare the mechanical properties of the silica-aerogel polyurethane foams. The internal temperature of the universal testing machine was maintained through the cryogenic chamber. The thermal conductivity of the silica-aerogel-polyurethane foam was measured using a heat flow meter to confirm the insulation performance. In addition, the effect of the silica aerogels on the cells of the polyurethane foam was investigated using FE-SEM and FTIR. From the experimental results, the 1 wt% silica aerogel polyurethane foam showed outstanding mechanical and thermal performances.

The Effects of Kevlar Pulp on Polyurethane Foam for Cryogenic Temperature (극저온용 폴리우레탄 폼에 미치는 케블라 펄프의 영향)

  • Oh, Jong-Ho;Bae, Jin-Ho;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.514-520
    • /
    • 2018
  • Polyurethane foam has excellent mechanical strength and insulation performance, and has been adopted as an insulation material for $-163^{\circ}C$ liquefied natural gas carrier. In this study, Kevlar Polyurethane Foams(K-PUF) were synthesized by adding Kevlar pulp with excellent mechanical strength for the purpose of improving the performance of existing polyurethane foam. Since polyurethane foam has mechanical performance depending on the proportions of Kevlar pulp added, the mechanical strength of the K-PUF with ratios of fiber0.2wt.%, 0.4wt.%, 0.6wt.%, 0.8wt.% and 1.0wt.%) was evaluated. The compression tests were performed on the 4 different temperatures($20^{\circ}C$, $-50^{\circ}C$, $-110^{\circ}C$ and $-163^{\circ}C$) in consideration of the environmental characteristics as a cryogenic insulation used in LNG carrier. Besides, the effects of the fiber addition on polyurethane foam with closed cell structure were evaluated in a phenomenological approach through SEM analysis. All the results were compared to Neat-polyurethane foam. As a results, 0.8wt.% K-PUF showed the improved mechanical strength, and the addition of Kevlar pulp in a certain ratio improves the mechanical performance by enhancing the compression resistance.

Synthesis of Polyurethane Foam at Room Temperature by Controlling the Gelling Reaction Time (겔화 반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성)

  • Lee, Hojoon;Oh, Chungik;Liow, Chi Hao;Kim, Soyeon;Han, Youngjoon;Oh, Min-Seok;Joo, Hyeong-Uk;Chang, Soo-Ho;Hong, Seungbum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.630-634
    • /
    • 2020
  • We developed a processing recipe to synthesize flexible polyurethane foam with a pore size of 335 ± 107 ㎛. The gelling reaction time was varied from 0 to 30 minutes and the physical properties of the foam were evaluated. The gelling reaction where the polypropylene glycol and tolylene 2,4-diisocyanate (TDI) were reacted to form urethane prepolymer, proceeded until a chemical blowing agent, deionized water, was introduced. Fourier transform infrared (FT-IR) spectra showed that the composition of the foam did not change but the foam height reached a peak value when the gelling reaction time was 10 minutes. We found that increasing the gelling time lessened the coalescence and helped the formation of cells. Lastly, the repeatability of polyurethane foam was confirmed by one-way analysis of variance (ANOVA) by synthesizing ten identical polyurethane foams under the same experimental conditions, including the gelling reaction time. Overall, the new time parameter in-between the gelling and blowing reactions will give extra stability in manufacturing identical polyurethane foams and can be applied to various polyurethane foam processes.

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds (인계화합물을 포함한 재활용 폴리우레탄폼의 난연성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.

Polyurethane을 이용한 Thiobacillus sp. IW의 고정화

  • Hwang, Eun-Sang;Im, Geun-Gil;Lee, Gwang-U;Gang, Chun-Hyeong;Ryu, Hwa-Won;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.536-539
    • /
    • 2000
  • A simple and effective method has been developed for the immobilization of the cell on polyurethane foam. Two types of commercially available polyurethane foam and Hydro-filt were tested. The ultimate purpose of the process is to produce low-cost materials for hydrogen sulfide removal which are being increasingly used for industrial application. Effect of several parameters were studied on the cell loading. These parameters were type, size, and amount of polyurethane foam. MC-70 was the best immobilization material of three type of carriers, and optical particle size was $5{\sim}8mm$ and amount of polyurethane foam was 8g/L.

  • PDF

Morphological, Thermal and Dynamic Mechanical Properties of Polyurethane Product with Various Contents of Acrylic Polyol (Acrylic Polyol 함량을 달리한 폴리우레탄 제품의 형태학적 열적 및 동적·기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.276-281
    • /
    • 2013
  • Polyester type polyurethane foam modified with acrylic polyol was prepared by quasi prepolymer method. Thermal and dynamic mechanical properties of polyurethane foam were analysed by thermal gravimetric analysis(TGA) and dynamic mechanical analysis(DMA). Also, glass transition temperature was measured by differential scanning calorimeter(DSC). As acrylic polyol contents were increased, thermal stability measured by TGA was slightly decreased. Storage modulus was increased and tan delta was decreased with increasing of acrylic polyol contents.

A Study on Ignitability and Heat Release Rate Characteristics of Rigid Polyurethane Foam (경질 폴리우레탄폼의 착화성 및 열방출특성 연구)

  • 공영건;이두형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.117-123
    • /
    • 2003
  • In this study; the ignition and heat release rate characteristics of rigid polyurethane foam were investigated in accordance with setchkin ignition tester and cone calorimeter which is using oxygen consumption principle. In the ignition temperature study; flash-ignition temperature was $383^{\circ}C$-$390^{\circ}C$, self-ignition temperature was$ 493^{\circ}C$∼495$^{\circ}C$. The self-ignition temperature of rigid polyurethane foam was about $100^{\circ}C$ higher than the flash-ignition temperature. In the cone calorimeter study, the time to ignition of rigid polyurethane foam was faster as the external heat flux increase. In the same heat flux level, the time to ignition was faster as the density of rigid polyurethane foam decrease. Also the heat release rate was the largest value at the heat flux of /$50 ㎾\m^2$ and had a tendency of increase as the heat flux level and density increase. In the standpoint of time to ignition and heat release rate, the fire performance of rigid polyurethane foam was influenced by the applied heat flux level and density and the flashover propensity classified by Petrella's proposal was high.

Remediation of PAH-Polluted Soil by Pseudomonas sp. Adhered on PU Foam (PU매체에 부착한 유류분해 bacteria를 이용한 오염토양 처리)

  • Cho Dae-Chul;Huh Nam-Soo;Kwon Sung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.458-464
    • /
    • 2006
  • Bioremediation has been recognized as one of the best tools for hydrocarbon contaminated soil and nearby groundwater which had been heavily polluted in industrial areas. Degradation of PAHs in PAH-polluted loam soil were investigated under polyurethane foam environment with adsorbed bacteria Pseudomonas sp. (KCCM 40055) in order to acquire vital data for the environmentally-friendly process and material. macroporous commercial polyurethane foam that is widely used for microbial attachment in such as sewage treatment was selected for experiments. We also examined the microbial adherence upon the media. SR9-35C/G among the PU samples showed the highest degree of attachment and bioconversion. The conversion efficiency increased with moisture content of soil.

  • PDF

A Study on the Density and Thermal Conductivity of Rigid Polyurethane Foam According to Mixing Amount (혼합 양에 따른 경질 폴리우레탄폼의 밀도 및 열전도율에 관한 연구)

  • Shin, Joung-Hyeon;Jo, Su-Yeon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.127-128
    • /
    • 2021
  • Rigid urethane foam is widely applied because it is light and has superior insulation performance compared to insulation materials such as EPS or glass wool. However, it has the disadvantage of being vulnerable to fire. Therefore, in this study, before proceeding with the research to improve the fire resistance of the rigid polyurethane foam, we would like to investigate the change in density and thermal conductivity of the rigid polyurethane foam according to the change in the mixed weight of the main material and the curing agent. It was found that the density increased as the mixed weight increased. The thermal conductivity showed similar values overall. As for the density distribution, the central part was low and the outer part was high.

  • PDF

Comparative Study on Mechanical Behavior of Low Temperature Characteristics of Polymeric Foams for Ships and Offshore Structures (폴리머 폼의 선박 및 해양구조물 적용을 위한 극저온 기계적 거동 특성 분석)

  • Park, Seong-Bo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.495-502
    • /
    • 2014
  • Glass-reinforced polyurethane foam (R-PUF) is widely used as the primary and secondary insulation of Mark-III type liquefied natural gas (LNG) cargo system. And, polyurethane foam (PUF) and polyisocyanurate foam (PIR) are often used for insulation of onshore structures or LNG storage and pipeline system. These polymeric foam materials are known for the characteristics that mechanical properties are dependent on strain rate and temperature. In this study, compression tests for R-PUF, PIR, and PUF were carried out for the estimation of mechanical behaviors under the cryogenic environment. The range of thermal condition was from room temperature to 110K and strain rates were $10^{-3}s^{-1}$ and $10^{-4}s^{-1}$. The test results were analyzed based on the conditions of strain-rate and temperature.