• Title/Summary/Keyword: Polyurethane Foam

Search Result 357, Processing Time 0.032 seconds

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Crashworthy behaviour of rigid polyurethane foam under constant impact energy (동일 충격 에너지 조건에서의 발포 폴리우레탄의 충격특성에 관한 연구)

  • Munshi, Mahbubul Basit;Jeong, Kwang-Young;Choi, Young-Jong;Cheon, Seong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.43-47
    • /
    • 2007
  • Based on experimental impact testing data, due to changing of velocity and mass of the impactor simultaneously under constant impact energy, crashworthiness of polyurethane foam has been observed. Dynamic tests were carried out in an instrumented impact-testing machine. Also, modified Sherwood-Frost model was proposed to investigate the crashworthy behaviour of rigid polyurethane foam under the condition of constant impact energy.

  • PDF

A Study on Tool Offset for Cutting of the Polyurethane Foam (폴리우레탄폼 절삭가공시 공구보정에 관한 연구)

  • Min, Se-Hong;Kim, Hei-Song
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • After constructing master model utilizing CAD data originated by sketch, product NC data for polyurethane foam using digitized master model data. And model cutting is performed utilizing specially developed polyurethane foam cutting tool in machining center. In this study, it is discussed to construct concept of tool offset, method of tool offset and feature tolerance, etc., that is impossible for cutting of the polyurethane foam by CNC machine.

  • PDF

Diisocyanate Exposure Assessment for Polyurethane Foam Manufacturing Workers (우레탄 폼 제조방식에 따른 작업자의 디이소시아네이트 노출수준 평가)

  • Jeong, Jee Yeon;Park, Sung Wook;Lee, Jee Eun;Lee, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.209-216
    • /
    • 2012
  • Objectives: Polyurethanes are usually formed by the reactions of liquid diisocyanate components with liquid polyol resin components. Although polyurethanes have advantageous properties, such as their versatility, the manufacturing process generates diisocyanates, which can cause asthma and respiratory irritation in exposed workers. This study compared the differences in diisocyante concentrations between two different (molded foam and slabstock foam) polyurethane foam manufacturing methods. Materials and Methods: Active samples and direct reading samples of diisocyanates (MDI, TDI) were collected in five polyurethane foam manufacturing companies. Results: Workers' exposure concentrations of diisocyanate (GM: 4.078 ppb, range: 1.190~23.770 ppb) in a slabstock foam manufacturing company were much higher than those (GM: 0.011 ppb, range: 0.001~0.055 ppb) in molded foam manufacturing companies. The results of the direct reading samples of diisocyanate indicated that the rapid reaction zone of the slabstock foam processes emitted large amounts of diisocyanates. Conclusions: The exposure levels of diisocyanates for all molded foam workers were much lower than the occupational exposure standard (5 ppb); however, exposure levels for many slabstock foam workers exceeded the standard.

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.

Study on Flame Retardancy and Thermal Resistance Properties of Phenolic Foam and Polyurethane Foam (페놀 폼과 폴리우레탄 폼의 난연 및 내열성 연구)

  • Lee, Ju-Chan;Seo, Jung-Seok;Kim, Sang Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, flame retardancy of polyurethane foam and phenolic foam were investigated by addition of phosphorous flame retardants. The thermal degradation behavior of polyurethane foam and phenolic foam in the presence of flame retardants has been studied by thermogravimetric analysis(TGA). Heat release rate(HRR), mean HRR, mass loss rate(MLR), total smoke released(TSR) and limited oxygen index(LOI) were tested by cone calorimeter. From the test results, Phenolic foam showed low HRR, MLR and TSR than polyurethane foam.

Effect of graphene oxide on mechanical characteristics of polyurethane foam (산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향)

  • Kim, Jong-Min;Kim, Jeong-Hyeon;Choe, Young-Rak;Park, Sung Kyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.493-498
    • /
    • 2016
  • In the present study, graphene oxide based polyurethane foams were manufactured as a part of the development process of mechanically strengthened polyurethane foam insulation material. This material is used in a liquefied natural gas carrier cargo containment system. The temperature of the containment system is $-163^{\circ}C$. First, graphene oxide was synthesized using the Hummers' method, and it was supplemented into polyol-isocyanate reagent by considering a different amount of graphene oxide weight percent. Then, a bulk form of graphene-oxide-polyurethane foam was manufactured. In order to investigate the cell stability of the graphene-oxide-polyurethane foam, its microstructural morphology was observed, and the effect of graphene oxide on microstructure of the polyurethane foam was investigated. In addition, the compressive strength of graphene-oxide-polyurethane foam was measured at ambient and cryogenic temperatures. The cryogenic tests were conducted in a cryogenic chamber equipped with universal testing machine to investigate mechanical and failure characteristics of the graphene-oxide-polyurethane foam. The results revealed that the additions of graphene oxide enhanced the mechanical characteristics of polyurethane foam. However, cell stability and mechanical strength of graphene-oxide-polyurethane foam decreased as the weight percent of graphene oxide was increased.

Nonliear vibration analysis of polyurethane foam (폴리우레탄 폼의 비선형 진동특성 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3435-3441
    • /
    • 2014
  • A dynamic modeling and prediction of polyurethane foam material, which is used as the seat in vehicles is very important for improving the ride quality of vehicle occupants. In this study, parameters to define the nonlinear stiffness and time-variant characteristics of the viscoelasticity of polyurethane foam were obtained using a static compression test. Polynomial functions and convolution integral were used to model the nonlinear and viscoelastic characteristics of polyurethane foam mathematically. The dynamic behaviors excited by the seat floor displacement were analyzed using a numerical integration method for the nonlinear vibration model. As a result, the viscoelastic characteristics of polyurethane foam was found to be an important parameter for improving the ride quality.

A Study on the Synthesis and Mechanical Characteristics of NATM Resin (HATM 수지의 합성 및 기계적 특성에 관한 연구)

  • Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.355-361
    • /
    • 2005
  • The physical characteristics of polyurethane were examined by SEM, FT-IR tensile strength and mole % [NCO/OH]. Growing concerns in the environment-friendly architecture and public works have led to the development of solvent-free formulations that can be cured and foamed in air. Compared with general packing materials, this resin is much stronger in intensity and much longer in durability. Polyurethane foam resins were mainly composed of polyol, MDI, silicone surfactant, fillers, catalyst and blowing agent. The rigid foam of polyurethane in mechanical characteristics were due to chain extender and the increase of mole % [NCO/OH]. The change in the microstructure of polyurethane should be taken into account when considering the process of construction and durability through the polyurethane polymer resin in lots of industries.