• Title/Summary/Keyword: Polypyrrole, Actuator

Search Result 9, Processing Time 0.021 seconds

Enhanced Behaviors of Ionic-Polymer Metal Composite (IPMC) Actuator Coupled with Polymeric Anion-doped Polypyrrole Thin Film

  • Hong, Chan;Nam, Jae-Do;Tak, Yong-Sug
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.137-140
    • /
    • 2006
  • In order to overcome the weak actuation and relaxation problems during the deformation of IPMC actuator, polymeric anion (polystyrenesulfonate)-doped polypyrrole(Ppy(PSS)) was electrodeposited onto IPMC actuator. Electrochemical quartz crystal microbalance study showed that hydrated cations were instilled into Ppy(PSS) film and polymeric-anion dopants introduced during polymerization were not expelled. Ppy(PSS)-coated IPMC actuator formed two electrode/electrolyte interfaces, Pt/nafion and Ppy(PSS)/bulk solution, and additive volume expansion phenomena at interfaces induced the large deformation compensating the relaxation of actuation by back diffusion of water.

Thickness Characteristics and Improved Surface Adhesion of a Polypyrrole Actuator by Analysis of Polymerization Process

  • Ryu Jaewook;Jung Senghwan;Lee Seung-Ki;Kim Byungkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1910-1918
    • /
    • 2005
  • Characterizing electrochemical polymerization of polypyrrole film on a substrate depends on many parameters. Among them, potential difference and cumulative charges play important role. The level of potential difference affects the quality of the polypyrrole. On the contrary, cumulative charge affects the thickness of the polypyrrole. The substrate surface is adjusted physically and chemically by treating with sandblasting and the addition of thiol for surface adhesion improvement. Experimental results show that the sandblasted and thiol treated substrate provides better. adhesion than non-sandblasted and non-thiol treated substrate.

Fabrication of Microactuators Using Conductive Polymer (전도성 고분자를 이용한 마이크로 액추에이터 제작)

  • Lee, Seung-Ki;ChoI, Young;An, Ho-Jung;Park, Jung-Ho;Sim, Woo-Young;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.698-704
    • /
    • 2000
  • Mechanical performances of beam shaped and bridge-shaped conductive polymer actuator have been measured and analyzed varying polymerization conditions and operating conditions such as applied current, polymerizing time, frequency of the current and kinds of electrolytes. For the application of conductive polymer actuator to micropump, the diaphragm structure has been fabricated, which is composed of polypyrrole, solid polymer electrolyte and parylene. Measured results how the possibility of the practical application of conductive polymer actuator.

  • PDF

Preparation and Characterization of Polypyrrole Electroactive Actuators (Polypyrrole를 이용한 전기활성 구동기의 제조 및 특성)

  • 박정태;최혁렬;김훈모;전재욱;남재도
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.826-832
    • /
    • 2001
  • In this study, PPy/gold/mylar type electroactive bi-layer actuator was prepared by the electrochemical polymerization of pyrrole onto the gold/mylar film and the actuation characteristics were studied using bending beam method. Conducting polymer-based actuators undergo volumetric changes due to the movement of dopant ions into the film during the electrical oxidation process. The bilayer films exhibited different actuation characteristics depending on dopant ion size. It was observed that the relatively small dopant ion (i.e. toluene sulfonate) moved into the PPy film at oxidized state, so volume expanded to result in bending motion. In case of the film having large dopant ion (i.e. dodecylbenzenesulfonate), volume expansion was observed at reduced state. This is due to the incorporation of $Na^+$ counterion with water molecules, while the large dopant ion was fixed in the film due to the limited mobility during tile redox process.

  • PDF

Conductive Polymer Coated Electro-active Paper (EAPap) as Hybrid Actuator (전도성 폴리머와 셀룰로오스 종이를 결합한 EAPap 작동기)

  • Yun, Sung-Ryul;Kim, Jae-Hwan;Ounaies, Zoubeida;Deshpande, S.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.275-278
    • /
    • 2004
  • Electro-Active Paper (EAPap) is attractive for EAP actuator due to its merit in terms of light weight, dry condition, large displacement output, low actuation voltage and low power consumption. The EAPap is based on cellulose paper, and is shown to involve primarily transport of ions in response to an external electric field. This actuating mechanism is similar to conductive polymer based actuators. For performance improvement of EAPap, hybrid actuators are tried. The actuators based on cellulose paper attached conducting polypyrrole, polyaniline and single wall carbon nanotube/polyaniline(emeraldine base) have been achieved by Electro chemical deposition and mechanical deposition of the polymers onto cellulose paper.

  • PDF

Characterization and Experimental Verification of Solid Polymer Electrolyte for Conductive Polymer Actuator Operated in Air (공기 중에서 동작하는 전도성 고분자 액추에이터용 고체전해질의 특성 분석 밑 실험적 검증)

  • An, Ho-Jeong;Lee, Seung-Gi;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.125-133
    • /
    • 2002
  • In order to fabricate stable conductive polymer actuators which can be operated in air, conductivity and solidity of polymer electrolyte materials have been studied. It was found that Nafion+LiCl is appropriate material to be used for conductive polymer actuator. Using the Nafion+LiCl solid polymer electrolyte, single layer PPy actuators have been fabricated and their deflection was measured. Double layer PPy actuators make up for shortcoming of single layer PPy actuator and displacement and frequency response can be improved by fabrication of double layer PPy actuator. This kind of all-solid-polymer actuator can be used for practical applications.

Mechanical Properties of Conductive Polymer as Actuator Materials with Change of Polymerization Condition (합성조건의 변화에 따른 액츄에이터 재료로서의 전도성 고분자의 기계적 특성)

  • Choi, Young;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.446-451
    • /
    • 1998
  • Recently, conductive polymer is known to be direct-drive active material which can convert electrical energy directly into mechanical energy. In this paper, the polymerized thickness of polypyrrole is measured with change of polymerization conditions and the mechanical bending is analyzed for various polymerized thickness. In order to detect of mechanical bending, bending beam method using the bridge shaped sample is used. Thickness of polypyrrole is proportional to polymerization time in fixed current density. Also it shows a linear relation with the applied current except high current density. Maximum displacement appears at the thickness of $18.35{\mu}m$ which has been polymerized at $5.4{\mu}A/mm^2$ and for 120min and actuated at the frequency of 0.1Hz.

  • PDF

The Performance of Nafion-Based IPMC Actuators Containing Polypyrrole/Alumina Composite Fillers

  • Lee, Jang-Woo;Kim, Ji-Hye;Chun, Yoon-Soo;Yoo, Young-Tai;Hong, Soon-Man
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1032-1038
    • /
    • 2009
  • A polypyrrole (PPy)/alumina composite filler prepared via in-situ polymerization of pyrrole on alumina particles was incorporated into $Nafion^{(R)}$ to improve the performance of ionic polymer-metal composite (IPMC) actuators. The IPMCs with the pristine PPy without alumina support did not show bending displacements superior to that of the bare Nafion-based IPMC, except at a high PPy content of 4 wt%. This result was attributed to the low redox efficiency of the PPy alone in the IPMC and may have also been related to the modulus of the IPMC. However, at the optimized filler contents, the cyclic displacement of the IPMCs bearing the PPy/alumina filler was 2.2 times larger than that of the bare Nafion-based IPMC under an applied AC potential of 3 Vat 1 Hz. Even under a low AC potential of 1.5 V at 1 Hz, the displacement of the PPy/alumina-based IPMCs was a viable level of performance for actuator applications and was 2.7 times higher than that of the conventional Nafion-based IPMC. The generated blocking force was also improved with the PPy/aiumina composite filler. The greatly enhanced performance and the low-voltage-operational characteristic of the IPMCs bearing the PPy/alumina filler were attributed to the synergic effects of the neighboring alumina moiety near the PPy moiety involving electrochemical redox reactions.

Variations in Electrical Conductivity of CNF/PPy Films with the Ratio of CNF and Application to a Bending Sensor (탄소나노섬유의 함량에 따른 CNF/PPy 필름의 전기전도도 및 굽힘센서로 응용)

  • Kim, Cheol;Zhang, Shuai;Kim, Seon-Myeong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • A new material, carbon-nanofiber/polypyrrole (CNF/PPy) composite films, with different CNF weight ratios were fabricated electrochemically. Compared to the fabrication process based on simple physical mixing, the flexibility of the new film has been improved much better than the previous similar material. Pure PPy films were also fabricated by the new electrochemical process for the comparison of difference. Several SEM images were taken at two locations (electrode-side and solution-side) and at the cross section of the samples. Electrical conductivity of the composite films was measured by the four-probe method. The conductivity of the pure PPy film 0.013cm thick was 79.33S/cm. The CNF/PPy composite film with 5% CNF showed a conductivity of 93S/cm. One with 10% CNF showed a conductivity of 126 S/cm. The conductivity of PPy improves, as the CNF weight ratio increases. The good conductivity of CNF/PPy composites makes them a candidate for a small bending actuator. A bending sensor consists of PPy and PVDF, which can be operated in the air, was designed and the bending deflection was calculated using FEM.