• Title/Summary/Keyword: Polypropylene Carbonate

Search Result 15, Processing Time 0.021 seconds

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation (CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용)

  • Park, Ahrumi;Kim, Seong-Joong;Lee, Pyung Soo;Nam, Seung Eun;Park, You In
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.126-134
    • /
    • 2016
  • To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.

Studies on the Artificial Cultivation of Pleurotus cystidiosus O.K.Miller, the Abalone Mushroom (전복느타리버섯(Pleurotus cystidiosus O.K.Miller)의 인공재배에 관한 연구)

  • Jang, Kab-Yeul;Jhune, Chang-Sung;Shin, Chul-Woo;Park, Jung-Sik;Oh, Se-Jong;Choi, Sun-Gyu;Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.31 no.3
    • /
    • pp.200-205
    • /
    • 2003
  • The study was carried out on the artificial cultivation of the abalone mushroom, Pleurotus cystidiosus O.K.Miller. The pine sawdust substrates with 20% rise bran were good for mycelial growth and high quantity of P. cystidiosus in the bottle cultivation. Moreover, the proper volume for bottle cultivation was 850 ml and the removal of spawn and surface layer of the medium before pin-heading was more efficient. The yields of P. cystidiosus were higher in sawdust substrates added calcium carbonate than those not added calcium carbonate. The volume of 3 kg polypropylene bag is good for yield and biological efficiency in bag cultivation of P. cystidiosus. Cotton wastes were proper substrates for bag cultivation. In the effect of different cultivation temperature, $28{\pm}2^{\circ}C$ cultivation temperature was good for for primordial formation after inoculation.

Exothermic Oil Absorbent Sheet for Low-sulfur Fuel Oil (LSFO) Spilled into Seawater in the Winter Season (동절기 해상으로 유출된 저유황 중질유 제거를 위한 발열 흡착포)

  • Park, Han-gyu;Oh, Gyung-geun;Bae, Byung-Uk;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.297-302
    • /
    • 2022
  • An exothermic oil absorbent sheet with calcium chloride crystals can be fabricated, by dipping a clean polypropylene fabric in calcium carbonate and hydrochloric acid solution and drying it. The exothermic oil absorbent sheet applied to the seawater surface, releases heat by the dissociation of calcium chloride. The dissociation heat liquefies the solidified low-sulfur fuel oil at a low temperature, and converts it to a state at which it can be absorbed. The optimum mole concentrations of calcium carbonate and hydrochloric acid required for the exothermic oil absorbent sheet, are 0.25 M and 0.5 M, respectively. The oil absorption capacity of the exothermic oil absorbent sheet for low sulfur fuel oil depends on the seawater temperature. But, it is highly excellent at 4.5-7.08 g/g at 10℃, the average seawater temperature during the winter in Korea. The exothermic oil absorbent sheet is an excellent alternative in absorbing low-sulfur fuel oil in winter and removing it from seawater.

Effect of polyol on urethane to increase the cavitation resistance (우레탄수지에서 캐비테이션 저항을 높이기 위한 Polyol의 영향)

  • Lee, Iksoo;Kim, Nackjoo;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.628-634
    • /
    • 2014
  • In this study, a new paint which is able to resist the cavitation erosion is tried to be developed by using urethane added with polyol such as poly propylene glycol(PPG), poly carbonate diol(PCD), polycaprolactone polyol (PCL-1), and poly caprolactone-tetramethylene gylcolether polyol(PCL-2). The new paint synthesized by adding polyol was characterized with physical properties and resistivity to cavitation erosion. Among polyol, the prepolymer added with PCD showed high hardness and wear resistance. However, due to too high in viscosity, the prepolymer added with PCL-1 was selected as a paint. The paint added with PCL-1 showed high resistivity to cavitation erosion and its surface was monitored by using Scanning Electron Microscope.