• Title/Summary/Keyword: Polynomial-based Study

Search Result 324, Processing Time 0.025 seconds

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.

Engagement classification algorithm based on ECG(electrocardiogram) response in competition and cooperation games (심전도 반응 기반 경쟁, 협동 게임 참여자의 몰입 판단 알고리즘 개발)

  • Lee, Jung-Nyun;Whang, Min-Cheol;Park, Sang-In;Hwang, Sung-Teac
    • Journal of Korea Game Society
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 2017
  • Excessive use of the internet and smart phones have become a social issue. The level of engagement has both positive and negative effects such as good performance or indulgence phenomenon, respectively. This study was to develop an algorithm to determine the engagement state based on cardiovascular response. The participants were asked to play a pattern matching game and the experimental design was divided into cooperation and competition task to provide the level of engagement. The correlation between heart rate and amplitude was analyzed according to each task. The regression equation and accuracy were verified by polynomial regression analysis. The results showed that heart rate and amplitude were positively correlated when the task was a game, and negatively correlated when there was a reference task. The accuracy of classifying between game and reference task was 89%. The accuracy between tasks was confirmed to be 76.5%. This study is expected to be used to quantitatively evaluate the level of engagement in real time.

A Study on Modeling of Search Space with GA Sampling

  • Banno, Yoshifumi;Ohsaki, Miho;Yoshikawa, Tomohiro;Shinogi, Tsuyoshi;Tsuruoka, Shinji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.86-89
    • /
    • 2003
  • To model a numerical problem space under the limitation of available data, we need to extract sparse but key points from the space and to efficiently approximate the space with them. This study proposes a sampling method based on the search process of genetic algorithm and a space modeling method based on least-squares approximation using the summation of Gaussian functions. We conducted simulations to evaluate them for several kinds of problem spaces: DeJong's, Schaffer's, and our original one. We then compared the performance between our sampling method and sampling at regular intervals and that between our modeling method and modeling using a polynomial. The results showed that the error between a problem space and its model was the smallest for the combination of our sampling and modeling methods for many problem spaces when the number of samples was considerably small.

  • PDF

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

A Study on a VLSI Architecture for Reed-Solomon Decoder Based on the Berlekamp Algorithm (Berlekamp 알고리즘을 이용한 Reed-Solomon 복호기의 VLSI 구조에 관한 연구)

  • 김용환;정영모;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.17-26
    • /
    • 1993
  • In this paper, a VlSI architecture for Reed-Solomon (RS) decoder based on the Berlekamp algorithm is proposed. The proposed decoder provided both erasure and error correcting capability. In order to reduc the chip area, we reformulate the Berlekamp algorithm. The proposed algorithm possesses a recursive structure so that the number of cells for computing the errata locator polynomial can be reduced. Moreover, in our approach, only one finite field multiplication per clock cycle is required for implementation, provided an improvement in the decoding speed, and the overall architecture features parallel and pipelined structure, making a real time decoding possible. From the performance evaluation, it is concluded that the proposed VLSI architecture is more efficient in terms of VLSI implementation than the rcursive architecture based on the Euclid algorithm.

  • PDF

A Study On the Simulation Model of the Transformation of Random Variables Using FBI (Fortran Based Interpreter) (FBI(Fortran Based Interpreter)를 이용한 확률변수 변환의 시뮬레이션 모델에 관한 연구)

  • Kim, Won-Gyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.105-115
    • /
    • 1987
  • Although there are many theoretical methods for the transformation of random variables. it is difficult to find probability density functions for the new random variables because of the complexity in mathematics. The author developed a simulation model solving the above difficulties using FBI (Fortran Based Interpreter) routines. The FBI is a kind of language Interpreter analyzing the arithmetic statement in character data forms. In this paper. the FBI routines will be explained and the structure and applications of simulation model will be also demonstrated. Polynomial curve fitting method is applied to define the probability density function which can not be defined by well-known pdf. This program can also be used for instructing mathematical statistics and identifying distribution of the simulated data.

  • PDF

Case studies: Statistical analysis of contributions of vitamins and phytochemicals to antioxidant activities in plant-based multivitamins through generalized partially double-index model

  • Yoo, Jae Keun;Kwon, Oran
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • It is important to verify the identity of plant-based multivitamins prepared with a natural-concept and popular for daily consumption because they are easily purchased in markets with imperfect information. For this study, a generalized partially double-index model (GPDIM) was employed as a main statistical method to identify the contribution of vitamins and phytochemicals to antioxidant potentials using data on antioxidant capacities and chemical fingerprinting. A bootstrapping approach via sufficient dimension reduction is adopted to estimate the two unknown coefficient vectors in the GPDIM. Fifth order polynomial regressions are fitted to measure the contributions of vitamins and phytochemicals after estimating the coefficient vectors with the two double indices.

A Study On Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architectures (3차원 얼굴인식 모델에 관한 연구: 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.900-911
    • /
    • 2015
  • In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.