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Abstract

It is important to verify the identity of plant-based multivitamins prepared with a natural-concept and popular
for daily consumption because they are easily purchased in markets with imperfect information. For this study,
a generalized partially double-index model (GPDIM) was employed as a main statistical method to identify the
contribution of vitamins and phytochemicals to antioxidant potentials using data on antioxidant capacities and
chemical fingerprinting. A bootstrapping approach via sufficient dimension reduction is adopted to estimate the
two unknown coefficient vectors in the GPDIM. Fifth order polynomial regressions are fitted to measure the
contributions of vitamins and phytochemicals after estimating the coefficient vectors with the two double indices.

Keywords: antioxidant capacity, bootstrapping, generalized partially double-index model, plant-
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1. Introduction

Multivitamins are a fast-growing market (Radimer et al., 2004). Natural-concept and/or plant-based
products are easily found in grocery stores and lead consumers to anticipate additional health bene-
fits. There are a lack of labeling requirements for natural claims to health benefits that make natural
source multivitamins a target of fraud. Therefore, it is important to develop a model that applies a
combined approach of a set of in vitro bioassay for antioxidant capacity and discriminator chemical
fingerprinting to verify the identity of plant-based multivitamins.

‘Phytochemical’ broadly refers to all plant-derived chemicals (Bolling et al., 2011). They are
synthesized to protect the plants from adversities including outside attack, physical stress, and ox-
idation. Phytochemicals are expected to be physiologically beneficial to the human body vis-a-vis
numerous mechanisms. A number of studies have revealed that phytochemicals are important for at
least their antioxidant role (if not for other properties), to protect tissues from activities that lead to
chronic disease (Pietta, 2000). If that is indeed the case with the phytochemicals that coexist in plant-
based multivitamins, one must consider a strategy to verify their identity by establishing rigorous
criteria that includes chemical standardization and biological assays. So far, the question of whether
phytochemical existed in accompany with vitamins in plant-based multivitamins may provide extra
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health benefits remained unsolved until now due to the immense complexity. Moreover, a lack of
labeling requirements for natural claims makes fraud possible and diminishes the trustworthiness of
plant-based multivitamins. A new strategy to identify extra health benefits from plant-based multivi-
tamins can contribute to protect and maintain the sustainability of the long-term production of natural
ingredients. This would assist regulatory bodies and increase consumer confidence towards natural
ingredient products.

Computational models have a wide range of applications in food and nutrition science. A math-
ematical approach was employed to develop a reliable and feasible model to verify the identity of
plant-based multivitamins, using antioxidant capacities as a model function. Our investigative focus
is on the contributions of vitamins and phytochemicals to antioxidant activities; therefore, it naturally
induces a consideration of a regression problem for antioxidant activities (Y; responses) given two
sets of predictors, one of which is vitamins (U), and the other is phytochemicals (W). For this, one
popular statistical model should follow multiple linear regression:

YIXeRP =(UeR",WeRM)}=¢+a'U+BW+eg, (1.1)

¢ is an unknown intercept, p = p, + p,,, @ € RP* and B € R?* are unknown regression coeflicients,
and ¢ is a random error assumed with zero mean and variance o2, which is independent of (U, W).
Unknown coeflicients of y, @ and 8 in (1.1) are estimated conventionally through least squares.

This usual approach has several potential problems. First, there are possibilities of a relationship
between a'U and BTW other than the additive one. If so, the form of @™ U + 8TW should mislead the
investigation of the contribution of vitamins and phytochemicals to each antioxidant activity. Second,
if the additive relation cannot be assumed to hold, then least squares are not a proper way to estimate
@ and B. These two potential problems arise because the additive relation between @"U and 8TW is
pre-assumed.

To overcome these deficits, in this paper, we consider the following statistical model, called
GPDIM:

Y|{X = (U € R?, W € RP)} = f(a/TU, ,BTW) +e.

We will further GPDIM in the following section. To estimate @ and 8 without knowing f(-), a method
recently proposed by Yoo (2015) will be adopted. After estimating @ and B through the method in
Yoo (2015), the original regression of Y|{X = (U € R”«,W e RP)} is changed to that of YI(@"U €
R!, BTW e R") without a loss of information on the regression. However, the clear difference between
the two is the number of predictors in the model. The former has p predictors, while the latter has

. . . N AT . . .
only two predictors. A suitable model using Y|(@"U, 8 W) will be constructed to investigate the
contributions of vitamins and phytochemicals to antioxidant activities through polynomial regression.

2. Data description and statistical methods
2.1. Data description

This section describes how data was collected. A total of 15 multivitamins with 3 lots were purchased
from a local market in Seoul, Korea. Single daily dose of each sample was ground into a fine powder
and extracted with 10 mL of 1% hydrochloric methanol by sonication for 30 minutes. Extracts were
centrifuged at 6,000 rpm for 15 min at 4°C, filtered through a syringe filter (0.2 ym), aliquoted and
stored at —70°C in foil covered test tubes prior to analysis.
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To acquire in vitro antioxidant capacity measurements from commercial multivitamin products,
ferric reducing antioxidant power (FRAP) was measured using a blue colored complex, Fe**/TPTZ
as described by Benzie and Strain (1996). Total phenol content (TPC) was determined by the Folin-
Ciocalteu colorimetric method (Singleton et al., 1999). Aqueous gallic acid was used as a standard and
results were expressed as mg of gallic acid equivalent (GAE) per g of daily dose of each multivitamin.

2.2. Statistical method
Recall GPDIM defined in:

YI{X = (UeR™ W eR™)} = f(a"U W) +e. 2.1

In the GPDIM, the unknown function f(-) describes the functional relationship between a"U and
BYW. The key characteristic of the GPDIM is that the predictors X are divided into two sets of vari-
ables, U and W. In the model, the response of ¥ depends on X only through two linear combinations
of @™U and B"W. The conditional relationship of ¥ given X is fully characterized by @"U and STW.
Therefore, the primary interest in the model is placed onto the estimation of @ and 8 without knowing
f(). A proper model for f(-) can be built to characterize how Y depends on a'U and BTW after esti-
mating & and 8. For example, if f(a"U,B"W) = ¢ + @TU + 8'W, the GPDIM in (2.1) is equivalent
to the multiple linear regression model in (1.1). That is, the latter can be expressed as a special case
of the former, so the GPDIM generalizes the multiple linear regression.

In the GPDIM, if setting § € R”? = {a = (@, 0)", B, = (0,8)"}, we can have X = (U, BTW).
The least squares may be unsuitable to estimate @ and 3 since the specific forms of f(-) are assumed
as unknown. So, we adopt an approach recently developed by Yoo (2015) to estimate @ and 3.

In Yoo (2015), first, the following four element matrices are constructed:

Mors = 27! cov(¥, X) cov(¥, X)"27!;
MoLsy = 27! cov (Yz, X) cov (Yz, X)T IR
Msave = 72 E (I - cov(Z|Y)) ;

Mg = 2 E((Y - EQN)*ZZT) X2,

where I stands for the identity matrix, X = cov(X) and Z = 12X - E(X)).
Next the following weighted sums of the two among the four element matrices:

M¢ = wMpg + (1 — 0)M.,,

where 0 < w < 1 and Mg and M, are two different element matrices among the four. If w is equal to
0 or 1, Mc is reduced to one element matrix.

Then Mc is spectral-decomposed such that M¢ = Zf’:l /l,-yiyl.T withd; > 4, 2+ > 4, 2 0 and
yiTy ;jis equal to 1 with i = j and zero otherwise.

According to Yoo (2015), the eigenvectors of ¥ = (y,,7,) corresponding to the two largest and
non-zero eigenvalues of 4; and A, are equal to (@, By)-

In practice, the sample versions of the four element matrices are constructed by replacing them
with their usual moment estimators. For notational conveniences, we will denote the estimator of the
four elementary matrices as Mors, Mors2, Msave and MpHd, respectively. Then, M is constructed as:
MC = wMD +(1- w)l\A/IO. The following six kinds of combinations are considered and summarized in
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Table 1: Six candidates of M constructed from combinations from the four sample elementary matrices of
MOLS, MOLSZ’ MSAVE and MpHd Wlth w = 00, 025, 05, 0.75

Case 1: MoLs Case 2: wMOLs +(1- w)MOLsz
Case 3: wMors + (1 = w)Mpud Case 4: wMors2 + (1~ w)Mpng
Case 5: (JJMOLS +(1- w)MSAVE Case 6: a)M()Lsz +(1- w)MSAVE

Table 1. We consider w = 0.25, 0.5, 0.75 for case 2 and w = 0.0, 0.25, 0.5, 0.75 for cases 3—6. It should
be noted that case 1 is the same as the multiple linear regression in (1.1). Therefore, the GPDIM via
Yoo (2015) does not rule out multiple linear regression, but includes it as a possible case. For cases
3-6 with w = 0, Mc is equal to one of Ms AVE OF MpHd. Once Mc is constructed, the eigenvectors of
¥ = (¥1,7,) corresponding to its two largest eigenvalues of M becomes the estimators (&, BO) of
(@0, By)-

Two natural questions arise in estimating @ and B: (1) how do we choose a best combinations
among all possible choices of Mc and w to induce the best estimation of $?; (2) how should #, and
¥, be matched with &, and BO and how should @& and B be selected from &, and BO, once they are
matched?

To handle the first question, a bootstrapping procedure is suggested by Yoo (2015). First, construct
f],.¢ from the original sample for each case. Next, obtain #;, from a bootstrap sample of ¥ and X, and
iterate this total B times. Then compute a trace correlation r in Hooper (1959) to measure how close

i]ref and f]b:

1 X A e L
rp = \/Etrace({nref(nfefmef) nfef}{nb(nlnb) n}f}), b=1,....B

To convert the correlation (larger r, closer to each other) to the distance (smaller value, closer to each
other), a trace correlation distance D; is defined:

D;ZI—}’b.

Then, compute D; = (1/B) Zle Dj. According to Yoo (2015), B = 500 is normally recommended.
After computing D; for all possible cases of M and w, finally, choose the case to provide the smallest
D;, and set the corresponding ¢ as the estimate of 7.

To answer the second question, the following distinguishing values (DV) is developed in Yoo
(2015), and choose one to give the largest DV:

P
. DVj 00 = Zm, Z i |
=py+1
P
2. DVj,a = anf Z 3,
{=pw+1
P=Du P
_ ~2 ~2 .
3. DVj,p, = Z m, - Z m,|;
(=1 {=p—pu+1
P=Pu p
_ ~2 ~2
4. DVﬁzﬁo - Z "2( - Z n2[ :
(=1 {=p—py+1
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Here is the rationale of how DV works. Suppose that 7}, is the correct estimate of a. If @ is well
estimated by ), the values of #; ,, £ = (p,, + 1),..., p in fj; should be close or equal to zero, so
it is expected that Zi;(pw o iﬁf is close or equal to zero. Then we should have DVy 4, = DVj, 4.
Suppose that #, is the correct estimate of B,. By applying the same rationale, it is expected that
DV, 8, 2 DVy, g,- Therefore, the largest one among the four DVs indicates that the first letter should
be an estimate of the second letter in the subscripts in DV. So, the natural rule using DV is to choose
the largest, and set the first subscript as the estimate of the second subscript in DV. If one of #, or
f], is determined as &, the other is automatically done as B(,. After completing this determination
procedure, @ and B are estimated by the first p, elements of &, and the last p,, elements of BO,
respectively. The codes for the statistical method are written in R and available upon request.

3. Statistical analysis through GPDIM and results
3.1. Statistical analysis through GPDIM

Recent studies have shown that the high antioxidant activities of plants are largely attributed to phe-
nolic compounds (Zheng and Wang, 2001) and/or carotenoids (Paiva and Russell, 1999). Based on
this concept, 6 phenolics of ellagic acid (Ell), genistein (Genis), hesperidin (Hes), keracyanin (Kera),
quercetin (Quer), and rosmarinic acid (Ros) and 4 carotenoids of S-carotene (8C), lutein (Lue), ly-
copene (Lyc), and zeaxanthin (Zeaxan) were selected and analyzed using high-performance liquid
chromatography with a photodiode array detector coupled with an Agilent 6530 quadrupole time-
of-flight mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Vitamins C and E and
Seleumn (VitC, VitE, and Sel, in order) were also analyzed along with the ten discriminator phyto-
chemicals.

In the study, one statistical issue is placed onto investigating the contributions of vitamins and
phytochemicals to FRAP and TPC, respectively, which has to be done through statistical modeling.

If considering FRAP and TPC as response variables and U € R3 = (VitC, VitE, and Sel) and
W e R!9 = (Ell, Genis, Hes, Kera, Quer, Ros, BC, Lue, and Lyc, Zeaxan) as two sets of predictors,
the GPDIM should be a natural choice for this study. First, the two unknown coefficient vectors of @
and S corresponding to U and W, respectively, were estimated by Yoo (2015). Next, proper regression
models were investigated through polynomial regression of FRAP or TPC given @ U and 8TW. After
building the models, the contributions of vitamins and phytochemicals was measured.

Let (@F, BF) and (&r, BT) denote the estimates of coefficients for FRAP and TPC, respectively.
Then marginally standardizing each of the predictors to have a sample standard deviation of 1, the
estimates of the double indices for FRAP and TPC are:

Ur = @}U = 308.58VitC — 279.89VitE — 22.59Sel;

Wp = ﬁITpW = —1.86Ell + 10.63Genis — 5.078Hes + 14.16Kera — 27.13Quer
—10.53Ros — 12.178C + 163.84Lue — 246.38Lyc + 9.18Zeaxin.
Ur := &;.U = 378.57VitC + 1288.79VitE + 22.58Sel;

Wy = ﬁ;W = —0.92Ell - 1.64Genis — 1.17Hes + 80.65Kera — 7.54Quer
— 98.88Ros — 1.028C + 55.60Lue — 53.98Lyc — 8.16Zeaxin.

With these indices, polynomial regressions upto the fifth order were fitted:

FRAP = 7.19 + 2.610; — 7.930% — 1.0103 + 1.150% — 4.32W. (3.1)
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Table 2: Measures of contributions of vitamins (U) and phytochemicals(W)

Contributions TSS Normalization
C(FRAP|U) = 247.376 578.152 0.136
C(FRAP|W) = 78.344 578.152 0.428
C(TPC|U) = 326.588 1737.424 0.188
C(TPC|W) = 520.582 1737.424 0.300

TSS = total sums of squares, FRAP = ferric reducing antioxidant capacity, TPC = total phenol content.

TPC = 6.52 + 40.8307 + 137.902 +25.8303 — 139.960% + 37.4903
—2.86Wr +2.55W2 + 0.45W;. (3.2)

In (3.1), the polynomials of Ur upto 4 are required for the modeling, while W is just the first.
However, the polynomials of U7 and Wy upto 5 and 3, respectively, are necessary in (3.2). A direct
comparison of the contributions of vitamins and polychemicals is not plausible since the numbers of
variables in U and W are different and the maximum polynomial orders of U and W in (3.1) and (3.2)
are not the same.

The contributions of vitamins (U) and phytochemicals (W) were measured by the differences
in residual sums of squares between the estimated regression functions in (3.1) and (3.2) and those
without either U or W, still keeping the polynomials in (3.1) and (3.2). For example, consider the
contribution of U to TPC, denoting C(TPC|U). Then, refit (3.2) without Uy, that is fit a regression
of TPC|(Wr, W% VAV%). Let the residual sums of squares from the fit in (3.2) and TPC|(Wr, W% W%)
denoted as RSS(TPC|Ur, Wr) and RSS(TPC|Wr), respectively. Then C(TPC|U) is measured as:

C(TPC|U) = RSS (TPC|Wr) — RSS (TPC|U7, Wr).

Next, in order to measure the contribution of polychemicals C(TPC|W) in (3.2), a regression of
TPC|(U7, U% U% U;, U;) is fitted, and its residual sums of square RSS(TPC|U7) is computed. The
contribution is measured:

C(TPC/W) = RSS (TPC|U7) - RSS (TPClUT, Wr).

Then, bigger values of C(TPC|U) and C(TPC|W) indicate more contribution to TPC. Actually, the
difference of the two residual sums of squares is known for Type-III sums of squares in the context
of experimental design (Oehlert, 2000), and the value of C(TPC|U) measures the contribution of U to
the regression of TPC on U and W in (3.2) after adjusting W. In this way, the contributions of U and
W to FRAP can be measured.

For the fair comparison between C(FRAP|U) and C(TPC|U), they are normalized by dividing them
by their total sums of squares from (3.1) and (3.2), respectively, because FRAP and TPC have different
measurement scales. The computed contributions of U and W to FRAP and TPC are reported in Table
2.

3.2. Results

Table 2 shows that the phytochemicals provide three times and one and half more contributions to
FRAP and TPC, respectively, than vitamins. The amount of the contribution of phytochemicals to
FRAP and TPC are not the same. Phytochemicals account for about 43% and 30% of the total varia-
tion of FRAP and TPC, respectively, so phytochemicals provide more contribution to FRAP to TPC.
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However, vitamins provide more contribution to TPC than to FRAP. This is an interesting finding be-
cause the changes in the amount of contributions of vitamins and phytochemicals to two antioxidant
activities are opposite. The changes (0.128) between the contributions of phytochemicals to FRAP
and to TPC are also larger than those (0.052) of vitamins. This implies that the changes between the
contributions of phytochemicals are more sensitive to those of vitamins.

The necessity and value of this research is confirmed by statistical analysis that indicates that
phytochemicals are potentially more important to antioxidant activities than vitamins.

4. Conclusions

There is no labeling requirement for natural claim; therefore, determining contribution of nutrients
and phytochemicals to antioxidant potentials is important to discriminate plant-based multivitamins
from synthetic multivitamins, because multivitamins (which are the natural-concept and/or plant-
based products) are popular in daily consumption and easily purchased in markets.

For this study, GPDIM of antioxidant activities on vitamins and various phytochemicals is em-
ployed as a main statistical tool to find potential advantages over multiple linear regression, which
is a very popular statistical method. Polynomial regressions are fitted after estimating the unknown
coefficient vectors in GPDIM based on the approach by Yoo (2015); in addition, the contributions of
vitamins and phytochemicals are measured using residual sums of squares. The importance of phyto-
chemicals should be noted because phytochemicals provide more contribution to antioxidant activities
than vitamins.

Following the statistical analysis, an interesting further research topic would be if the amount
of vitamins and phytochemicals in antioxidant capacities are measured in different ways (Huang et
al., 2002; Walker and Everette, 2009) has opposite and reciprocal relationship. It should also be
investigated if the changes in the amount of contribution of phytochemicals to different measures of
antioxidant capacities are more sensitive than those in vitamins and that the changes in vitamins seems
constant.

We believe that this statistical analysis is beneficiary to prove the characteristics of plant-based
multivitamins and efficacy in relevant fields of science.
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