• Title/Summary/Keyword: Polynomial regression model

Search Result 215, Processing Time 0.033 seconds

Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

  • Cho, C.I.;Alam, M.;Choi, T.J.;Choy, Y.H.;Choi, J.G.;Lee, S.S.;Cho, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.607-614
    • /
    • 2016
  • The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of $polynomials{\times}3$ types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle genetic evaluations for milk production traits in Korea.

A Dynamic Piecewise Prediction Model of Solar Insolation for Efficient Photovoltaic Systems (효율적인 태양광 발전량 예측을 위한 Dynamic Piecewise 일사량 예측 모델)

  • Yang, Dong Hun;Yeo, Na Young;Mah, Pyeongsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.632-640
    • /
    • 2017
  • Although solar insolation is the weather factor with the greatest influence on power generation in photovoltaic systems, the Meterological Agency does not provide solar insolation data for future dates. Therefore, it is essential to research prediction methods for solar insolation to efficiently manage photovoltaic systems. In this study, we propose a Dynamic Piecewise Prediction Model that can be used to predict solar insolation values for future dates based on information from the weather forecast. To improve the predictive accuracy, we dynamically divide the entire data set based on the sun altitude and cloudiness at the time of prediction. The Dynamic Piecewise Prediction Model is developed by applying a polynomial linear regression algorithm on the divided data set. To verify the performance of our proposed model, we compared our model to previous approaches. The result of the comparison shows that the proposed model is superior to previous approaches in that it produces a lower prediction error.

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

Pharmacodynamic Modeling of Vincristine in Lymphoma Patients (림프종 환자에서 회귀모형을 이용한 vincristine의 약물 용량 예측 인자 및 부작용 모델 연구)

  • Seo, Jeong-Won;Kim, Dong-Hyun;Yun, Jin-Sang;Kim, Seon-Hwa;Choi, Bo-Yoon;Oh, Jung-Mi;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • The objective of this study was to determine whether any pretreatment parameters were associated with pharmacological effect or toxicity parameters after vincristine administration and to describe a mathematical model, which explains the interpatient pharmacodynamic variability. The relationship between patient characteristics and vincristine dose and hematological toxicity were evaluated. 68 pediatric and adolescence patients and 107 adults with acute lymphoblastic leukemia were treated with vincristine $1.5mg/m^2/day$ IV and other anticancer drugs as scheduled. Complete blood counts and other blood test results were obtained. The input variables were age, gender, weight, lean body weight (LBW), height, body surface area, vincristine dose and total vincristine dose. The outcome measures were nadir values (white blood cells, absolute neutrophil counts, hemoglobin, and platelets); the absolute decrease, relative decrease, and survival fraction of blood cells. Polynomial regression analysis was carried out to determine the other significant covariates. The variability of $WBC_{nadir}$ was modeled with good precision and accuracy with a two-covariate model. This model should be validated and improved on with further clinical data. We believe that such pharmacodynamic modeling should be explored further to determine its performance and clinical relevance compared with modeling using pharmacokinetic parameter.

A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method (퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구)

  • Baek, Jin-Yeol;Lee, In-Tae;Oh, Sung-Kwun;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.911-917
    • /
    • 2008
  • In this paper. we introduce and investigate new architectures and comprehensive design methodologies of intelligent dimming converter and evaluate the proposed model and the system through a series of numeric experiments. The intelligent dimming converter is developed by using the regression polynomial fuzzy model. In this paper, we put emphasis on the design of electronic ballast based on intelligent dimming converter and the energy saving according to the day-light and the user setting by applying the intelligent model to a fluorescent lamp. We show the superiority of the proposed intelligent dimming converter through the evaluation of performance with conventional electronic ballast by applying the intelligent model to real systems.

A Study on the Efficient Optimization of Suspension Characteristics for Dynamic Behavior of the High Speed Train (고속전철의 동적특성에 따른 효율적인 현가장치 최적화 방안 연구)

  • Park, Chan-Kyoung;Kim, Young-Guk;Hyun, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.501-506
    • /
    • 2001
  • Computer modeling is essential to evaluate possible design of suspension for a railway vehicles. By creating a simulation, the engineers are able to assess the feasibility of a given design and change the design factors to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have turned to surrogate modeling. A surrogate model is essentially a regression performed on a data sampling of the simulation. In the most general sense, metamodels(surrogate model) take the form $y(x)=f(x)+{\varepsilon}$, where y(x) is the true simulation output, f(x) is the metamodel output, and $\varepsilon$ is the error between the two. In this paper, a second order polynomial equation is partially used as a metamodel to represent the forty-six dynamic performances for high speed train. The number of factors as design variables of the metamodel is twenty-nine, which are composed the dynamic characteristics of suspension. This metamodel is used to search the optimum values of suspension characteristics which minimize the dynamic responses for high speed train. This optimization is a multi-objective problem which have many design variables. This paper shows that the response surface model which is made through the design of analysis of computer experiments method is very efficient to solve this complex optimization problem.

  • PDF

Development of a Short-term Rainfall Forecast Model Using Sequential CAPPI Data (연속 CAPPI 자료를 이용한 단기강우예측모형 개발)

  • Kim, Gwangseob;Kim, Jong Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.543-550
    • /
    • 2009
  • The traditional simple extrapolation type short term quantitative rainfall forecast can not realize the evolution of rainfall generating weather system. To overcome the drawback of the linear extrapolation type rainfall forecasting model, the history of a weather system from sequential weather radar information and a polynomial regression technique were used to generate forecast fileds of x-directional, y-directional velocities and radar reflectivity which considered the nonlinear behavior related to the evolution of weather systems. Results demonstrated that test statistics of forecasts using the developed model is better than that of 2-CAPPI forecast. However there is still a large room to improve the forecast of spatial and temporal evolution of local storms since the model is not based on a fully physical approach but a statistical approach.

Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling (강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일강우 내삽법의 개발)

  • Hwang, Yeon-Sang;Jung, Young-Hun;Lim, Kwang-Suop;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1083-1091
    • /
    • 2010
  • Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. However, widely used estimation schemes fail to describe the realistic variability of daily precipitation field. We compare and contrast the performance of statistical methods for the spatial estimation of precipitation in two hydrologically different basins, and propose a two-step process for effective daily precipitation estimation. The methods assessed are: (1) Inverse Distance Weighted Average (IDW); (2) Multiple Linear Regression (MLR); (3) Climatological MLR; and (4) Locally Weighted Polynomial Regression (LWP). In the suggested simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before applying IDW scheme (one of the local scheme) to estimate the amount of precipitation separately on wet days. As the results, the suggested method shows the better performance of daily rainfall interpolation which has spatial differences compared with conventional methods. And this technique can be used for streamflow forecasting and downscaling of atmospheric circulation model effectively.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

An analysis methodology for the power generation of a solar power plant considering weather, location, and installation conditions (입지 및 설치방식에 따른 태양광 발전량 분석 방법에 관한 연구)

  • Byoung Noh Heo;Jae Hyun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • The amount of power generation of a solar plant has a high correlation with weather conditions, geographical conditions, and the installation conditions of solar panels. Previous studies have found the elements which impacts the amount of power generation. Some of them found the optimal conditions for solar panels to generate the maximum amount of power. Considering the realistic constraints when installing a solar power plant, it is very difficult to satisfy the conditions for the maximum power generation. Therefore, it is necessary to know how sensitive the solar power generation amount is to factors affecting the power generation amount, so that plant owners can predict the amount of solar power generation when examining the installation of a solar power plant. In this study, we propose a polynomial regression analysis method to analyze the relationship between solar power plant's power generation and related factors such as weather, location, and installation conditions. Analysis data were collected from 10 solar power plants installed and operated in Daegu and Gyeongbuk. As a result of the analysis, it was found that the amount of power generation was affected by panel type, amount of insolation and shade. In addition, the power generation was affected by interaction of the installation angle and direction of the panel.