• Title/Summary/Keyword: Polynomial regression equation

Search Result 59, Processing Time 0.032 seconds

A Study on the Efficient Optimization of Suspension Characteristics for Dynamic Behavior of the High Speed Train (고속전철의 동적특성에 따른 효율적인 현가장치 최적화 방안 연구)

  • Park, Chan-Kyoung;Kim, Young-Guk;Hyun, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.501-506
    • /
    • 2001
  • Computer modeling is essential to evaluate possible design of suspension for a railway vehicles. By creating a simulation, the engineers are able to assess the feasibility of a given design and change the design factors to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have turned to surrogate modeling. A surrogate model is essentially a regression performed on a data sampling of the simulation. In the most general sense, metamodels(surrogate model) take the form $y(x)=f(x)+{\varepsilon}$, where y(x) is the true simulation output, f(x) is the metamodel output, and $\varepsilon$ is the error between the two. In this paper, a second order polynomial equation is partially used as a metamodel to represent the forty-six dynamic performances for high speed train. The number of factors as design variables of the metamodel is twenty-nine, which are composed the dynamic characteristics of suspension. This metamodel is used to search the optimum values of suspension characteristics which minimize the dynamic responses for high speed train. This optimization is a multi-objective problem which have many design variables. This paper shows that the response surface model which is made through the design of analysis of computer experiments method is very efficient to solve this complex optimization problem.

  • PDF

Development of Carbon-based Adsorbent for Acetylene Separation Using Response Surface Method (반응 표면 분석법을 활용한 Acetylene 분리용 탄소기반 흡착제 개발)

  • Choi, Minjung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.29-33
    • /
    • 2019
  • Carbon nanotubes, nanofibers and powders were used for acetylene adsorption experiments. A total of 15 different experiments were designed by 3-level of Box-Behnken Design (BBD) with 3 factors including the Pd concentration of 0 to 5%, adsorption temperature of 30 to $80^{\circ}C$ and $C_2H_2/CO_2$ of 3 to 10. Based on those data, a second order polynomial regression analysis was used to derive the adsorption amount prediction equation according to operating conditions. The adsorption temperature showed the greatest influence index while the $C_2H_2/CO_2$ ratio showed the smallest according to the F-value measurement of the ANOVA analysis. However, there was little interaction between major factors. In the adsorption optimization analysis, a 22.0 mmol/g was adsorbed under the conditions of Pd concentration of 3.0%, adsorption temperature of $47^{\circ}C$ and $C_2H_2/CO_2$ of 10 with 95.9% accuracy.

Effect of System Parameters on Target Parameters in Extrusion Cooking of Corn Grit by Twin-Screw Extruder (옥분 압출가공시 이축압출성형기의 System Parameters에 따른 압출물의 특성변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.88-92
    • /
    • 1991
  • To analyze the effects of the system parameters on the target parameters, which include the amount of water evaporation, water solubility index(WSI) and water absorption index(WAI), test trials of fractional factorial design of the three process variables at three levels were carried out for corn grit with a laboratory twin-screw extruder with three different screw configurations. The system parameters collected from the trials, such as extrusion temperature, specific mechanical energy input(SME) and mean residence time(RT), were showed the ranges of $129{\sim}182^{\circ}C$, $67{\sim}163\;kwh/ton$ and $12{\sim}34\;sec$, respectively. Within these ranges of the system parameters, the target parameters were able to be quantified by using multiple regression equations. The correlation of results with the system parameters blocked by the screw configuration as dependent variables, yield correlation coefficients above 0.90, and the correlation using the system parameters obtained from whole experiment system as the dependent variables yield correlation coefficients around 0.80. The functional relationship, which can be quantified by second order polynomial regression equation with only two system parameters within necessary degree of accuracy, can he graped in three dimensional surface response and contour diagrams.

  • PDF

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Dark Fermentative Hydrogen Production using the Wastewater Generated from Food Waste Recycling Facilities (혐기 발효 공정을 통한 음식물류 폐기물 탈리액으로부터 수소 생산)

  • Kim, Dong-Hoon;Lee, Mo-Kwon;Lim, So-Young;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.326-332
    • /
    • 2011
  • The authors examined the effects of operating parameters on the $H_2$ production by dark fermentation of the wastewater generated from food waste recycling facilities, in short "food waste wastewater (FWW)". Central composite design based response surface methodology was applied to analyze the effect of initial pH (5.5-8.5) and substrate concentration (2-20 g Carbo. COD/L) on $H_2$ production. The experiment was conducted under mesophilic ($35^{\circ}C$) condition and a heat-treated ($90^{\circ}C$ for 20min)anaerobic digester sludge was used as a seeding source. Although there was a little difference in carbohydrate removal, $H_2$ yield was largely affected by the experimental conditions, from 0.38 to 1.77 mol $H_2$/mol $hexose_{added}$. By applying regression analysis, $H_2$ yield was well fitted based on the coded value to a second order polynomial equation (p = 0.0243): Y = $1.78-0.17X_1+0.30X_2+0.37X_1X_2-0.29X_1{^2}-0.35X_2{^2}$, where $X_1$, $X_2$, and Y are pH, substrate concentration (g Carbo. COD/L), and hydrogen yield (mol $H_2$/mol $hexose_{added}$), respectively. The 2-D response surface clearly showed a high inter-dependency between initial pH and substrate concentration, and the role of these two factors was to control the pH during fermentation. According to the statistical optimization, the optimum condition of initial pH and substrate concentration were 7.0 and 13.4 g Carbo. COD/L, respectively, under which predicted $H_2$ yield was 1.84 mol $H_2$/mol $hexose_{added}$. Microbial analysis using 16S rRNA PCR-DGGE showed that $Clostridium$ sp. such as $Clostridium$ $perfringens$, $Clostridium$ $sticklandii$, and $Clostridium$ $bifermentans$ were main $H_2$-producers.

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구)

  • Lee, Min-Gyu;Kam, Sang-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.568-576
    • /
    • 2018
  • In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design with four input parameters : concentration ($X_1$: 50-150 mg/L), pH ($X_2$: 4-10), temperature ($X_3$: 293-323 K), adsorbent dose ($X_4$: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.

Statistical Optimization for Biodegradation of 2,4-Dichlorophenoxyacetic Acid by Soil Isolated Bacterium (토양 분리 박테리아에 의한 2,4-Dichlorophenoxyacetic산의 분해 최적화)

  • Kim, Byunghoon;Myunghee Han;Sungyong Cho;Sungjin Ahn;Lim, Sung-Paal;Sunkyun Yoo
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2003
  • 2,4-Dichlorophenoxyacetic acid (2,4-D) as a widely used herbicide has caused serious environmental problems because of its difficult decomposition in nature. We isolated the strain capable of metabolizing 2,4-D as sole carbon and energy source by an enrichment culture technique from the 2,4-D contaminated soil collected at orchard in Gwangju, Korea. This strain was identified tentatively as Aeromonas sp. NOH2. With this strain, we established the response surface methodology (Box-Behnken Design) to optimize the principle parameters for maximizing biodegradation of 2,4-D such as culture pH, temperature, and nutrient concentration in liquid batch culture. The ranges of parameters were obtained from preliminary works done at our laboratory and chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 5, 20, and 35 g/1 nutrient concentration. Initial concentration of 2,4-D was 500 ppm and nutrient source was tryptic soy broth. The experimental data were significantly fitted to a second order polynomial equation using multiple regression. The most important parameter influencing 2,4-D degradation and biomass production was nutrient concentration. For 2,4-D degradation, the optimum values of pH and temperature, and nutrient concentration were obtained at pH (6.5), temperature (31.8 to $32.1^{\circ}C$), and nutrient concentration (29.6 to 30.1.0 g/1).

The Relationship Between Smoke-Yields and Tipping Materials of the Cigarette (담배 연기발생과 Tipping 재료와의 상관성 연구)

  • Kim, Young-Hoh;Lee, Young-Taek;Kim, Sung-Han;Kim, Chung-Ryul;Kim, Jong-Yeol;Shin, Chang-Ho;Lee, Keun-Hoi
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.131-138
    • /
    • 1998
  • In order to minimize the trial frequency in the new filter cigarette design, we studied the relationship between smoke yield and tipping materials of cigarette. A three levels full factorial design involving filament denier (X1,2.5-3.3d), Porosity of the acetate filter plug wrap (X2, 3,500-16,000CU) and porosity of the tip paper (X3, 400-1,200CU) was used. Three independent factors (Xl, X2, X3) were chosen for their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation, Y : $\beta$o + $\beta$1Xl + $\beta$2X2 + $\beta$3X3 + $\beta$11Xl2 + $\beta$22X22+ $\beta$33X32 + $\beta$12X1X2 + $\beta$13XIX3 $\beta$23X2X3 which measures the linear, quadratic, and interaction effects. Twenty-nine trial numbers were obtained as a results of using a three levels full factorial design and it was analyzed by the multiple regression analysis with backward stepwise in STATISTICA/pc under restricted conditions. Tar yields of the cigarette was affected by porosity of tip paper (0.66), filament denier (0.47) and porosity of plug wrap (0.28) in the decreasing order, and linear effect of tip paper porosity (B3) and filament denier (91) were significant at a level of 0.01($\alpha$). The filament denier and tipping paper porosity interaction F ratio among three factors had a P-value of 0,000041, indicating higher interaction between these factors. Based on the analysis of variance, the model fitted for Tar (Y1) was significant at 5% confidence level and the coefficient of determination (0.96) was the proportion of variability in the data fitted for by the model.

  • PDF

Optimization for the Post-Harvest Induction of trans-Resveratrol by Soaking Treatment in Raw Peanuts (침지조작에 의한 레스베라트롤 증가조건의 최적화)

  • Lee, Seon-Sook;Seo, Sun-Jung;Lee, Boo-Yong;Lee, Hee-Bong;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.567-571
    • /
    • 2005
  • In this study, the effects of varying the amount of water, soaking time at $25^{\circ}C$ and drying time after soaking at $45^{\circ}C$ on the induction of resveratrol were evaluated to optimize the soaking treatment by response surface methodology (RSM). After response surface regression (RSREG), the second-order polynomial equation was fitted to the experimental data. The analysis of variance showed that the model appeared to be adequate $(R^2=0.9547)$ with no significant lack of fit (p>0.1). From statistical analysis, amount of water and soaking time were found to be significant factors. On the other hand, drying time was not significant. Ridge analysis showed that the optimized parameters were $67.15\%$ for amount of water, 19.58 hr for soaking time, 65.56 hr for drying time. It was confirmed that resveratrol content was increased from $0.1\;{\mu}g/g$ to $4.55\;{\mu}g/g$ under the optimized conditions. In addition, the experimental values at the optimized condition agreed with values predicted by ridge analysis. The analytical method validation parameters such as accuracy, precision, and specificity were calculated to ensure the method's validity.