여러 대의 카메라를 이용하여 영상을 획득하는 다시점 카메라 시스템에서 각 시점의 색상이 서로 다르게 촬영되는 문제가 발생한다. 본 논문에서는 이런 색상 불일치 문제를 효과적으로 해결하기 위해 개선된 다항식 모델을 제안한다. 특징점 기반 대응점 추출 알고리즘을 이용하여 기준 시점과 다른 시점 간의 색상 대응 관계를 획득하고, 이를 이용하여 상대적인 매핑 곡선을 계산한다. 이때 비선형적인 관계를 반영하기 위해서 5차 다항 모델을 이용한다. 추출된 대응점의 동적 영역이 좁을 경우에 매핑 곡선의 정확도가 떨어지게 되는데, 이를 보완하기 위해서 매핑 곡선의 양 끝 부분을 1차 다항 모델을 이용하여 다시 추정한다. 이렇게 유추된 모델을 이용하여 색상을 보정하면, 추출된 대응점의 동적 영역에 강인하게 색상 불일치 문제를 해결할 수 있다. 제안한 방법은 색상 차트 촬영과 같은 전처리 과정이 필요하지 않기 때문에, 기존에 촬영된 다시점 영상에도 적용할 수 있다는 장점을 갖는다. 다양한 실험을 통해 제안한 알고리즘이 다른 최신의 알고리즘보다 보정 효과가 우수함을 확인했고, 객관적 평가에서도 우수한 성능을 보였다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1491-1498
/
2014
최적실험의 제일 큰 약점은 실험기준이 지나치게 모형과 그에 수반되는 가정에 의존한다는 점이다. 이는 종종 모형의 모수의 개수와 받힘점의 개수가 일치를 하는 경우로 이루어지는데 이는 가정된 모형이 참이 아닌 경우를 대비한 실험이 될 수 없다. 이런 경우 문헌에서는 가정된 다항회귀모형의 차수보다 큰 차수를 가진 다항회귀모형을 가정하고 최적실험을 제안하나 이는 D-효율에 근거한 관행적인 방법일 뿐이다. 본 연구에서는 O'Brien (1995)이 제안한 가정된 모형의 일반적인 이탈을 염두에 둔 추가받힘점 생성에 관하여 알아보고 단순회귀모형과 2차 회귀모형에 대한 실험들을 D-효율로 카타로그화 하여 실험자로 하여금 선택을 할 수 있게 하였다. O'Brien은 비선형모형에 대해 추가받힘점의 선택 방법을 제시하였지만 방법을 구현하는 데 있어 명확치 않은 기준이 있어 모수에 의존하는 비선형모형에 대한 최적실험보다는 다항회귀모형을 중심으로 심층적으로 사용방법을 알아보았다.
Prabha, P.;Marimuthu, V.;Jayachandran, S. Arul;Seetharaman, S.;Raman, N.
Steel and Composite Structures
/
제8권5호
/
pp.403-421
/
2008
The design provisions for semi-rigid steel frames have been incorporated in codes of practice for steel structures. In order to do the same, it is necessary to know the experimental moment-relative rotation (M-${\theta}_r$) behaviour of beam-to-column connections. In spite of numerous publications and collection of several connection databases, there is no unified approach for the semi-rigid design of steel frames. Amongst the many connection models available, the Frye-Morris polynomial model, with its limitations reported in the literature, is simple to adopt at least for the linear design space. However this model requires more number of connection tests and regression analyses to make it a realistic prediction model. In this paper, 3D nonlinear finite element (FE) analysis of beam-column connection specimens, carried out using ABAQUS software, for evaluating the M-${\theta}_r$ behaviour of semi-rigid top and seat-angle (TSA) bolted connections are described. The finite element model is validated against experimental behaviour of the same connection with regard to their moment-rotation behaviour, stress distribution and mode of failure of the connections. The calibrated FE model is used to evaluate the performance of the Frye-Morris polynomial model. The results of the numerical parametric studies carried out using the validated FE model have been used in proposing modifications to the Frye-Morris model for TSA connection in terms of the powers of the size parameters.
In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).
In this paper, we propose Genetic Algorithms(GAs)-based Optimal Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. The study is illustrated with the ACI Distance Relay Data for application to power systems.
In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.
In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.
In this paper, the FPNN(Fuzzy Polynomial Neural Networks) algorithm with multi-layer fuzzy inference structure is proposed for the model identification of a complex nonlinear system. The FPNN structure is generated from the mutual combination of PNN (Polynomial Neural Network) structure and fuzzy inference method. The PNN extended from the GMDH(Group Method of Data Handling) uses several types of polynomials such as linear, quadratic and modifled quadratic besides the biquadratic polynomial used in the GMDH. In the fuzzy inference method, simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used Each node of the FPNN is defined as a fuzzy rule and its structure is a kind of fuzzy-neural networks. Gas furnace data used to evaluate the performance of our proposed model.
본 논문에서는 비선형 RF 전력 증폭기의 효율적인 다항식 기반의 이산 신호 모델링 방법을 제시하였다. 비선형 RF 증폭기의 입, 출력 신호의 샘플링 과정을 통하여 이산 비선형 모델을 추출하는 과정을 기술하고, 테일러 급수와 메모리 다항식 구조를 이용한 다항식 기반의 비선형 이산 모델에서 모델 인자인 샘플률, 비선형 차수, 최대 메모리 깊이의 변화에 따른 모델의 오차를 분석하였다. 다항식 기반의 비선형 모델에서 오차는 샘플률, 비선형 차수, 최대 메모리 깊이에 대하여 특정 값 이후부터 일반적으로 수렴하는 특성을 보인다. 이에 모델 인자값에 따른 시스템의 복잡성을 고려하는 효율적인 이산 신호 모델링 기법을 제시하였다. 모델링 효율 지수를 정의하고, 이를 활용하여 최적의 모델 인자 값을 추출하는 방법을 제시하였다. 제시한 방법을 WiBro, WCDMA 등의 다양한 신호를 가지는 RF 전력 증폭기의 모델링에 적용하고, 제시한 방법의 효율성을 검증하였다. 제안된 기법은 빠른 속도의 모델링과 저렴한 가격의 디지털부를 사용할 수 있게 하여 차후 광대역 송신기에서의 빠른 속도와 낮은 가격의 디지털 전치 왜곡기 구성 등에 활용될 수 있을 것으로 사료된다.
반응표본 실험에 있어서 반응변수와 여러개의 독립변수와의 함수관계를 규명하기 위하여 다항회귀모형이 많이 사용되고 있으며 또한 이 다항회귀모형은 최적반응조건을 결정하고 제품의 질을 조절하기 위하여서도 쓰여진다. 이 논문에서 연구하는 문제는 다항회귀모형을 구성하고 있는 많은 항(項) 중에서 어떤 항들을 선택하여 주는 것이 정도(精度)있게 추정하기 위하여 적절한가 하는 문제이다. 정도(精度)가 향상되는 반응표면을 발견한다는 것은 최적반응조건을 결정하고 변수간의 함수관계를 정확하게 구하는데 도움을 준다. 다항회귀모형에서 적절한 항(項)들은 선택하기 위하여 이 논문에서는 하나의 기준을 제시할 것이며, 실제로 공장에서 응용될 수 있는 예제를 들어 설명하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.