• Title/Summary/Keyword: Polymethyl Methacrylate(PMMA)

검색결과 159건 처리시간 0.031초

Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;She, Jun-Kuan;Zhang, Dan
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.297-311
    • /
    • 2016
  • Based on the distributed fiber optic sensing (DFOS) technique, plastic optical fibers (POFs) are attractive candidates to measure deformations of geotechnical structures because they can withstand large strains before rupture. Understanding the mechanical interaction between an embedded POF and the surrounding soil or rock is a necessary step towards establishing an effective POF-based sensing system for geotechnical monitoring. This paper describes a first attempt to evaluate the feasibility of POF-based soil deformation monitoring considering the POF-soil interfacial properties. A series of pullout tests were performed under various confining pressures (CPs) on a jacketed polymethyl methacrylate (PMMA) POF embedded in soil specimens. The test results were interpreted using a fiber-soil interaction model, and were compared with previous test data of silica optical fibers (SOFs). The results showed that the range of CP in this study did not induce plastic deformation of the POF; therefore, the POF-soil and the SOF-soil interfaces had similar behavior. CP was found to play an important role in controlling the fiber-soil interfacial bond and the fiber measurement range. Moreover, an expression was formulated to determine whether a POF would undergo plastic deformation when measuring soil deformation. The plasticity of POF may influence the reliability of measurements, especially for monitored geo-structures whose deformation would alternately increase and decrease. Taken together, these results indicate that in terms of the interfacial parameters studied here the POF is feasible for monitoring soil deformation as long as the plastic deformation issue is carefully addressed.

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System

  • Yoo, Wook-Jae;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Moon, Jin-Soo;Park, Jang-Yeon;Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.235-239
    • /
    • 2010
  • In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.

Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting

  • Bae, Kiho;Noh, Ho-Sung;Jang, Dong Young;Kim, Manjin;Kim, Hyun Joong;Hong, Jongsup;Lee, Jong-Ho;Kim, Byung-Kook;Son, Ji-Won;Shim, Joon Hyung
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.320-324
    • /
    • 2015
  • Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

Simultaneous Transfer and Patterning of CVD-Grown Graphene with No Polymeric Residues by Using a Metal Etch Mask

  • 장미;정진혁;;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.642-642
    • /
    • 2013
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as high electron mobility, high thermal conductivity and optical transparency. Especially, chemical vapor deposition (CVD) grown graphene has been used as a promising material for high quality and large-scale graphene film. Unfortunately, although CVD-grown graphene has strong advantages, application of the CVD-grown graphene is limited due to ineffective transfer process that delivers the graphene onto a desired substrate by using polymer support layer such as PMMA(polymethyl methacrylate). The transferred CVD-grown graphene has serious drawback due to remaining polymeric residues generated during transfer process, which induces the poor physical and electrical characteristics by a p-doping effect and impurity scattering. To solve such issue incurred during polymer transfer process of CVD-grown graphene, various approaches including thermal annealing, chemical cleaning, mechanical cleaning have been tried but were not successful in getting rid of polymeric residues. On the other hand, lithographical patterning of graphene is an essential step in any form of microelectronic processing and most of conventional lithographic techniques employ photoresist for the definition of graphene patterns on substrates. But, application of photoresist is undesirable because of the presence of residual polymers that contaminate the graphene surface consistent with the effects generated during transfer process. Therefore, in order to fully utilize the excellent properties of CVD-grown graphene, new approach of transfer and patterning techniques which can avoid polymeric residue problem needs to be developed. In this work, we carried out transfer and patterning process simultaneously with no polymeric residue by using a metal etch mask. The patterned thin gold layer was deposited on CVD-grown graphene instead of photoresists in order to make much cleaner and smoother surface and then transferred onto a desired substrate with PMMA, which does not directly contact with graphene surface. We compare the surface properties and patterning morphology of graphene by scanning electron microscopy (SEM), atomic force microscopy(AFM) and Raman spectroscopy. Comparison with the effect of residual polymer and metal on performance of graphene FET will be discussed.

  • PDF

새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석 (Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land)

  • 서효재;서일환;노득하;이학성
    • 생물환경조절학회지
    • /
    • 제32권1호
    • /
    • pp.57-63
    • /
    • 2023
  • 본 연구에서는 새만금과 같은 간척지를 활용하여 대규모 첨단온실단지를 조성하는 경우 간척지의 환경적 특수성 중 높은 풍속에 따른 유리 단열재의 에너지 효율을 평가하였다. 현장에서 주로 사용되는 온실 단열재 중 4가지에 대한 평가 결과, 최대 37.4%의 에너지 차이를 보여, 온실 피복재의 선정이 중요함을 제시하였다. 이를 바탕으로 일반적인 내륙에서의 온실을 설계하는 것과 달리, 간척지에서는 내재해성 온실규격을 따라 시설을 설계하여야 하며, 에너지 소비량은 높아진 풍속과 재질을 고려하여 산정되어야 한다. 본 연구의 결과는 에너지 효율성을 온실 피복재의 종류와 풍속에 따라서 제시하고 있으며, 이는 대규모 첨단온실 조성 시 에너지 소비량을 예측하고, 이를 바탕으로 신재생에너지원을 포함하는 에너지 설계에 활용될 수 있다

Implementation of AAPM's TG-51 Protocol on Co-60 MRI-Guided Radiation Therapy System

  • Cho, Jin Dong;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in;Wu, Hong-Gyun;Park, So-Yeon
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.190-196
    • /
    • 2017
  • For the $ViewRay^{(R)}$ system (ViewRay Inc., Cleveland, OH, USA) which is representative of magnetic resonance (MR) guided radiotherapy machine, it is important to evaluate effectiveness of AAPM's TG-51 protocol and the effect of the magnetic field on absolute dosimetry. In order to measure the absolute dose, MR-compatible chamber and water phantom system manufactured in this study were used. The materials of the water phantom system were plastic of polymethyl methacrylate (PMMA) and non-ferrous materials. Due to the inherent feature of the $ViewRay^{(R)}$, all Co-60 sources are not located at gantry angle of $0^{\circ}$ while being located at gantry angle of $90^{\circ}$. For this reason, absolute dosimetry was performed based on the measurements in solid water phantom (SWP) and water which determine the SWP to water correction factor. For evaluation of output constancy with gantry angle, measurements were made with ionization chamber inserted in cylindrical water-equivalent phantom. For measured doses in water, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -0.27%, -0.45% and -0.22%, respectively. For measured doses in SWP, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -1.91%, -2.07% and -1.84%, respectively. All values of dose measured in SWP tended to be less than those measured in water by -1.63%. With the reference gantry angles of $0^{\circ}$ and $90^{\circ}$, the maximum values of deviation for Head 1, Head 2 and Head 3 were 0.48%, 1.06% and 0.40%, respectively. The measurement agreement is within the range of results obtainable for conventional treatment machines. The low strength of the magnetic field does not affect dose measurements. Using the SWP to water correction factor, absolute doses for $ViewRay^{(R)}$ system can be measured.

디지털 복제로 만든 맞춤형 인공치로 제작한 임시의치와 임플란트 수술용 템플릿을 통한 임플란트 지지형 고정성 보철 수복 증례 (Rehabilitation with implant-supported fixed dental prostheses using digital duplication technique on customized artificial tooth, interim denture and implant surgical template: A case report)

  • 정대길;오경철;심준성;박지만
    • 대한치과보철학회지
    • /
    • 제57권4호
    • /
    • pp.397-404
    • /
    • 2019
  • 성공적인 임플란트 치료를 위해서는 식립부위의 골조직 및 연조직 상태(condition)도 중요하지만 식립 위치 또한 매우 중요하다. 잘못된 위치에 식립된 임플란트는 생물학적, 심미적, 기계적 문제점을 야기하게 된다. 올바른 위치에 임플란트를 식립하기 위해서는 최종 보철물을 고려해야 하며 이를 위해서는 진단 왁스업 과정이 필요하다. 발치 후 사용 할 임시 의치의 인공치를 진단 왁스업 형태대로 제작하면 구강내에서 진단 왁스업 형태를 평가해 볼 수 있으며, 잘 적응된 임시 의치를 복제해 제작한 임플란트 수술용 템플릿으로 계획된 위치에 임플란트를 식립하는 것이 가능하다. 본 증례에서는 진단 왁스업을 디지털 복제하여 의치용 인공치를 맞춤형으로 제작하였고, 이를 이용해 임시 의치를 제작하였다. 충분한 적응 기간을 거친 후 임시 의치를 복제하여 임플란트 수술용 템플릿을 제작한 다음, 이를 활용하여 계획된 위치에 임플란트를 식립하였다. 골유착을 위한 충분한 치유기간을 가진 다음 진단 왁스업 형태가 반영된 임플란트 지지형 고정성 보철물을 제작하였다. 최종 보철물 장착 후 6개월간의 경과 관찰 기간 동안 심미적, 기능적으로 만족할 만한 치료 결과를 보였기에 이를 보고하고자 한다.

소아 SPECT/CT 검사를 위한 최저조건에서의 피폭선량측정 및 팬텀의 영상평가 (Abosrbed Dose Measurements and Phantom Image Ecaluation at Minimum CT Dose for Pediatric SPECT/CT Scan)

  • 박찬록;최진욱;조성욱;김진의
    • 핵의학기술
    • /
    • 제18권1호
    • /
    • pp.82-88
    • /
    • 2014
  • SPECT/CT로 소아 복부를 검사 하는데 있어 저선량 CT 조건에 따른 흡수선량을 측정하고 SPECT와 CT 영상의 질을 평가하고, 우수한 영상의 질을 유지하면서 최저의 흡수 선량을 받을 수 있는 tube voltage (kVp)와 tube current (mA)의 설정 방향을 알아보는데 목적을 두었다. 장비는 Discovery NM/CT 670을 사용하였다. PMMA phatom을 이용하여 80, 100 kVp 10, 15, 20, 25 mA의 조건을 설정하여 중심방향과 주변방향(3, 6, 9, 12시 방향의 평균) 의 흡수선량을 측정하였고, 그에 따른 image를 SNRD로 평가 하였다. CT QA performance phantom으로 CT image의 resolution을 MTF로 나타내었고, jaszczak phantom을 hot sphere와 배후방사의 비를 $^{99}mTc$을 1:8로 주입하여 4개의 sphere에 대한 SPECT image를 CNR로 평가하였다. 선량측정에서는 주변방향의 선량이 중심방향 선량보다 평균 7% 높게 측정되었으며, SNRD는 조건에 따라 유의한 차이가 없었으며 Resolution 평가에서는 0.385 lp/mm 기준으로 100 kVp가 80 kVp보다 평균 12% 재현성이 우수하였으며, jaszczak phantom을 이용해서 CT를 기반으로 한 attenuation correction 된 SPECT image를 CNR로 평가한 결과 CT조건의 변화와 무관하게 4개의 sphere 모두 유의한 차이를 보이지 않았다. 본 연구는 SPECT/CT 검사에서 최저의 흡수선량을 유지하고 우수한 영상의 질을 획득하는데 추가적인 연구가 필요할 것으로 사료된다.

  • PDF