• Title/Summary/Keyword: Polymerization Reactor

Search Result 71, Processing Time 0.035 seconds

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

Identification of Polymerization Reactor Using Third Order Volterra Kernel Model

  • Numata, Motoki;Kashiwagi, Hiroshi;Harada, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.26.2-26
    • /
    • 2001
  • It is known that Volterra kernel model can represent a wide variety of nonlinear chemical processes. But almost all Volterra kernel models which appeared in the literature are up to second order, because it was difficult to measure higher order Volterra kernels. Kashiwagi has recently shown a method for measuring Volterra kernels up to third order using pseudorandom M-sequence signals. In this paper, the authors verified the applicability of this method for chemical processes using polymerization reactor simulation. Also, the authors have recently proposed a practical Identification method for chemical processes, which is based on the combination of off-line nonlinear identification and on-line linear identification. This method is also applied to the identification of polymerization reactor, and we obtained ...

  • PDF

Reaction heat estimation of industrial batch reactors (산업용 회분식 반응기에서의 반응열 추정)

  • 방성호;이대욱;이광순;이석호;손종상;윤상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.595-600
    • /
    • 1993
  • The heat of reaction has been estimated from heat balance relationships around the reactor. The heat balance equations were formulated with the assumptions that the reactor temperature is uniformly distributed and the jacket temperatures are axially distributed. We have obtained the temperature distribution of jacket contents by FDM. And then, we have rearranged the heat balance equations so that the heat of reaction can be estimated from the finite number of temperature measurements, i.e., temperatures of the reactor contents, at the jacket inlet and outlet, respectively. The proposed method for reaction heat estimation on were applied to industrial batch reactors ; one is ABS polymerization reactor and the other is SAN polymerization reactor. We have also examined the variation of overall heat transfer coefficients for the reactors during reaction.

  • PDF

Hazard Evaluation of Runaway Reaction in the Vinyl Acetate Polymerization Process (비닐아세테이트 중합공정에서 폭주반응 위험성 평가)

  • Lee, Keun-Won;Han, In-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The risk assessment of thermal behavior and runaway reaction cased by an exothermic batch process in manufacture of the vinyl acetate resin are described in the present paper. The aim of the study was to evaluate the risk of runaway reaction with operating parameters such as a reaction inhibitor, reaction temperature and a mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool to investigate runaway reaction. From the experimental results, it was found that we could occur the auto acceleration for reaction of raw materials with operating parameters over $65^{\circ}C$ of reaction temperature in the vinyl acetate polymerization process.

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

Fuzzy Learning Control: Application to an Industrial Polymerization Reactor

  • Seokho-Yi;Park, Sunwon-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1106-1108
    • /
    • 1993
  • This paper deals with an industrial application of a fuzzy feedback combined learning control to an industrial batch free radical polymerization reactor. As a result, the plant has reduced the batch reaction time by 50 minute and stabilized both by 40 percent reduction of the standard deviations of product qualities, such as the total solid content and the graft gum, and by 45 percent reduction of the standard deviation of the batch reaction end time.

  • PDF

Modeling and Analysis of a Gas Sweeping Process for Polycarbonate Polymerization

  • Kim, Dae-Hyung;Ha, Kyoung-Su;Rhee, Hyun-Ku;Song, Kwnag-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.100.3-100
    • /
    • 2001
  • This article deals with the development of a mathematical model for the finishing polycarbonate polymerization process using a horizontal rotating disk-ring reactor with counter-current gas sweeping and the performance analysis of the reactor system by using the model. Here we intend to propose a model describing the reactor system consisting of two phases, in which by-product phenol is removed from the polymer of high molecular weight compatible with the products of commercial grades. The vapor phase is represented by a tanks-ln-series model while the polymer melt phase is regarded as a plug flow reactor.

  • PDF

A Study on the Preparation and Resist Characterization of the Plasma Polymerized Thin Films (플라즈마중합막의제작과레지스트 특성에 관한 연구)

  • 이덕출;박종관;한상옥;김종석;조성욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.802-808
    • /
    • 1994
  • The purpose of this paper is to describe an application of plasma polymerized thin film as an electron beam resist. Plasma polymerized thin film was prepared using an interelectrode capacitively coupled gas-flow-type reactor, and chosen methylmethacrylate(MMA)and methylmethacrylate-tetrameth-yltin(MMA-TMT) as a monomer. This thin films were also delineated by the electron-beam apparatus with an acceleration voltage of 30kV and an expose dose ranging from 20 to 900$\mu$C/cmS02T. The delineated pattern in the resist was developed with the same reactor which is used for polymerization using an argon as etching gas. The growth rate and etching rate of the thin film is increased with increasing of discharge power. Thin films by plasma polymerization show polymerization rate of 30~45($\pm$3) A/min, and etching rate of 440($\pm$30) A/min during Ar plasma etching at discharge power of 100W. In apparently lower than that of conventional PMMA, but the plasma-etching rate of PP(MMA-TMT) was higher than that of PPMMA.

  • PDF

Dynamic characteristics of a CSTR with MMA polymerization

  • Ahn, Jong-Pil;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.100-105
    • /
    • 1992
  • A mathematical model is developed for a CSTR in which free radical solution polymerization of methyl methacrylate(MMA) takes place. It turns out that five ordinary differential equations are to be treated simultaneously in order to predict the reactor performance. Although the reaction proceeds under the conditions of relatively low temperature and pressure, the system shows very complex bifurcation features due to the diffusion limitation (gel effect) and the temperature dependence of the kinetic parameters and physical properties. The effects of various system parameters on the reactor performance as well as on the polymer properties are investigated by using the bifurcation analysis. The application of the singularity theory enables us to divide the parameter space into several different regions, in each of which the system takes a unique steady state structure. Under certain circumstances, complex dynamic features such as HB points and limit cycles are observed and these should be taken into consideration in the reactor design.

  • PDF

Formation of the functional plasma ploymerized thin films by a new type reactor (새로운 반응장치를 이용한 기능성 플라즈마 중합막의 제작)

  • 김종택;이상희;박종관;박구범;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.72-76
    • /
    • 1998
  • A new gas-flow type reactor for plasma polymerization was developed to synthesize functional polymers, which enhances reaction of radicals activated in the discharge. Styrene was used for the plasma polymerization and molecular strucure and molecular weight distribution of the plasma -polymerized styrene were studies. The ploymer was evaluated to be an efficient electron beam resist. The sensitivity of the plasma-polymerized styrene film formed by this new reactor was better than that of the reported values of conventional polystyrene, Fine resist patterns could be successfully developed by a wet process.

  • PDF