• Title/Summary/Keyword: Polymeric Foams

Search Result 25, Processing Time 0.021 seconds

Determination of pressure-Dependent Yield . Criterion for Polymeric Foams (폴리머 폼 재료의 정수압 종속 항복조건 결정에 관한 연구)

  • 김영민;강신일
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • In addition to lightweight and moldable characteristics, polymeric foams possess an excellent energy absorbing capability that can be utilize for a wide range of commercial applications, especially in the crashworthiness of the automobiles. The purpose of the present study is to develop experimental methodology to characterize the pressure dependent yield behavior of the energy absorbing polymeric foams. For the compression test in a triaxial stress sate, a specially designed device was placed in a hydraulic press to produce and control oil pressure. For the test material, the polyurethane foams of two different densities were used. The displacement of the specimen, the load subjected to the specimen, and oil pressure applied to the specimen were measured and controlled. Stress strain curves and yield stresses for the four different oil pressure were obtained. It was found from the present experiments that the polyurethane foams exhibited significant increases in yield stress with applied pressure or mean normal stress. Based on this observation, a yield criteria which included the effect of the stress invariant were established for the polymeric foams. The obtained experimental constants which constituted the pressure-dependent yield criterion were verified.

Pressure-Dependent Yield Criterion For Polymeric Foams (폴리머폼의 압력종속항복조건에 관한 연구)

  • 이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.17-20
    • /
    • 2000
  • Polymeric foams are excellent energy absorber and have found a wide range of applications especially in the automotive industry. The purpose of the present study is to develop experimental and theoretical methodology to characterize the pressure dependent yield behavior of polymeric foams. For the compression test in a triaxial stress sate a specially designed device was placed in a press machine to produce and control oil pressure. From the experiment results it was observed that the size of Mother circles is changed with mean normal stress in contrast to general metal. Then the Coulomb-Mohr criterion was applied to the data.

  • PDF

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam (폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식)

  • Kwon, Sun-Beom;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2018
  • This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.

Biodegradability and Risk Assessment of Biomass-based Polymeric Materials

  • Han, Song Yi;Park, Chan Woo;Jang, Jae Hyuk;Lee, Seung Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.297-302
    • /
    • 2015
  • With the intention to solve environmental problems caused by synthetic plastics from petroleum resources, biodegradable polyurethane foams and thermosetting moldings were prepared from biomass, such as wood and wheat bran by liquefaction method. Biodegradability of these biomass-based polymeric materials was investigated. In activated sludge, polyurethane foams from liquefied wheat bran and thermosetting molding from phenolated wood were decomposed approximately 14% and 29% for 20 days, respectively. One of the wood fungi, Coriolus versicolor was able to grow without supplemental nutrition, only with distilled water and polyurethane foam as a nutrition source. Risk assessments were also conducted and results showed that estrogenicity, mutagenicity, and carcinogenicity were not observed in the extractives of biomass- based polymeric materials.

Mechanical and Thermal Properties of Environmentally Benign Silicone Foam Filled with Wollastonite

  • Kim, Yongha;Joeng, Hyeonwoo;Lee, Kyoung Won;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.300-305
    • /
    • 2020
  • In recent times, polymeric foams have been popularly used in various applications. To meet the demand for these applications, polymer foams with excellent mechanical and thermal properties are required. In particular, silicone foam has gained significant attention owing to its superior thermal properties and low density. In this study, the mechanical and thermal properties of silicone foams filled with wollastonite were investigated. A maximum tensile strength of 98.3 kPa was obtained by adding 15 phr of wollastonite. The specific gravity did not exhibit a marked difference up to 10 phr, but it increased substantially above 15 phr wollastonite. Thermogravimetric analysis indicated that adding wollastonite to the silicone foam increased both the amount of residue and the thermal decomposition temperature. The morphologies of the silicone foams filled with wollastonite were observed by scanning electron microscopy.

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

Numerical Analysis to Predict the Time-dependent Behavior of Automotive Seat Foam (자동차용 시트 폼의 시간 의존적 거동 예측을 위한 수치해석)

  • Kang, Gun;Oh, Jeong Seok;Choi, Kwon Yong;Kim, Dae-Young;Kim, Heon Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-112
    • /
    • 2014
  • Generally, numerical approaches of evaluation for vehicle seat comfort have been studied without considering time-dependent characteristics and the only seating moment have been considered in seat design. However, the comfort not only at the seating moment but also in the long-term should be evaluated because the passengers are sitting repeatedly on the seat to drive the vehicle for hours. So, the aim of this paper is to carry out a quantitative evaluation of the time-dependent mechanical characteristics of seat foams and to suggest a process for predicting the viscoelastic deformation of seat foam in response to long-term driving. To characterize the seat materials, uniaxial compression and tension tests were carried out for the seat foam and stress relaxation tests were performed for evaluating the viscoelastic behavior of the seat foam. A unit solid element model was used to verify the reliability of the material model with respect to the compression behavior of the seat foam. It is not straightforward to evaluate the time-dependent compression of foams using the explicit solver because the viscoelastic material model is limited. To use the explicit solver, the material model must be modified using stress-degradation data. Normalized stress relaxation moduli were added to the stress-strain curves obtained under static conditions to achieve a time-dependent set of stress-strain relations that were compatible with the implicit solver. There was good agreement between the analysis results and experimental data.

Improving Light Stability of Natural Rubber Latex Foam

  • Shim, Chang Su;Oh, Jeong Seok;Hong, Chang Kook
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • In this study, natural rubber latex foam was prepared in order to replace commercialized polyurethane foams as a car seat material. Physical properties of the latex foam were investigated and the light stability was improved. The latex foam was mixed in an aqueous solution state, and the degree of foaming and the accelerator ratios were appropriately controlled. Tensile properties, hysteresis and dynamic mechanical properties of the latex foam were measured to compare with those of polyurethane foams. UV light absorbers and radical scavengers were added for improving light stability of the latex foam. Xenon lamp test was conducted to investigate the effects of the reagents on light stability. Our results revealed that the prepared latex foam including a light absorber with an antioxidant showed excellent light stable performances.