• Title/Summary/Keyword: Polymeric Composite

Search Result 293, Processing Time 0.027 seconds

Polymerization Behavior of Polymeric Dental Restorative Composites Filled with Si-O Bridged Silica (Si-O Bridged 실리카가 충진된 치아수복용 고분자 복합체의 중합 특성)

  • Kim, Ohyoung;Lee, Jung Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.672-676
    • /
    • 2005
  • To improve the application of polymeric dental restorative composite (PDRC) for the posterior and anterior restoration, silica bridged with siloxane unit was firstly prepared by heat-treating a silica filler at various temperatures. Degree of conversion (DC), depth of cure, and dynamic volumetric polymerization shrinkage values of PDRC filled with silica bridged with siloxane unit were investigated to study the effect of heat-treated silica on the polymerization behavior of PDRC. From the experimental result, it was found that depth of cure was decreased with an increase of heat treatment temperature. on the other hand, both DC and polymerization shrinkage values were uniformly enhanced with increasing the heat treatment temperature. This phenomenon can be explained from the study that showed decrease of average particle size of silica resulted in the increase of relative amount of resin matrix in PDRC.

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method (농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정)

  • Kim, H.;Ann, J.Y.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test (Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구)

  • Jeong, Tae-Heon;Kwon, Yong-Su;Lee, You-Tae;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

Demage Repair for Polymeric Composite Carbody Using Self-Healing Concept (자가치료개념을 적용한 폴리머 복합재 차체의 손상보수기법 연구)

  • Yoon Sung-Ho;So Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.309-314
    • /
    • 2004
  • This study focused on the introduction of damage repair for polymeric composite carbody. called selfing tech-healinique. using microcapsules loaded with the healing agent The manufacturing process for microcapsules with the healing agent was introduced and tile characteristics of microcapsules manufactured by varying with various manufacturing process variables were evaluated. The DCPD was used for the healing agent and microcapsules were made of urea-formaldehyde resin. The magnitude and the size distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal stability was investigated by using a TGA under continuous and isothermal heating conditions for the healing agent. microcapsules without the healing agent. microcapsules with the healing agent.

  • PDF

Bending Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structures (직조 탄소섬유 발포 고분자 샌드위치 구조의 굽힘특성)

  • Chang Seung Hwan;Jang Tae Seong;Choi Jin Ho;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.131-134
    • /
    • 2004
  • In this paper, a representative unit volume (RUV) model was employed to simulate thermoforming process of carbon fabric-polymeric foam sandwich structures. Thermoforming simulations, which capture crimp angles and amplitude changes of carbon fabric with respect to different types of foams under the operating pressure were conducted with the help of RUV model. Changed shapes of tow structure after thermoforming were reflected in the two dimensional to determine mechanical properties of skin parts, i.e_ carbon fabric composites after thermoforming. Bending simulations with respect to different foam systems as well as different moduli of carbon fabric composites were successfully carried out by using properties obtained from two-dimensional analyses.

  • PDF

The Mechanical Property by Fiber Orientation Distributions in Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료에서 섬유배향상태에 따른 기계적 성질)

  • Lee, Dong-Gi;Sim, Jae-Ki;Han, Gil-Young;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.202-205
    • /
    • 2003
  • Investigated whether fiber orientation situation of fiber reinforcement macromolecule composition board and the fiber inclusion rate are perpendicular and horizontal direction tensile strength and some correlation. Fiber orientation situation of tensile strength of 0 direction of composition board increased changelessly by aeolotropy in isotropy. Tensile strength of 90 direction that is isotropy and tensile strength of 0 direction that is aeolotropy agreed almost. Get into aeolotropy, the reinforcement rate of fiber decreased. When load interacts for width direction of reinforcement.

  • PDF

FE Analyses of the Compressive Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structure (유한요소해석을 이용한 직조 탄소섬유 발포 고분자 샌드위치 구조의 압축특성)

  • Chang Seung Hwan;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.194-197
    • /
    • 2004
  • In this paper, compressive characteristics of carbon fabric skin with polymeric foam core sandwich structure were investigated by FE analyses and compressive tests of polyurethane foam were also conducted with respect to temperature changes, which were determined by curing processes of epoxy or polyester resin to obtain mechanical behaviour of polyurethane foam. FE analyses indicated variation of parameters with respect to manufacturing pressure, which have comparatively massive effect upon mechanical properties of sandwich structures, i.e. wavelength as well as crimp angle of carbon fabric

  • PDF

The Effect of Synthetic Polymer Membranes on the Skin Permeation of Anti-AIDS Drugs (항에이즈 약물의 경피흡수에 미치는 합성고분자 멤브레인의 영향)

  • Lee, Kyung-Jin;Kim, Dae-Duk;Chien, Yie W.
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • The effect of synthetic polymer membranes on the permeation rate of dideoxynucleoside-type anti-HIV drugs through hairless rat skin was studied using ethylene/vinyl acetate copolymer (EVA) and ethylene/methyl acrylate copolymer (EMA) membranes fabricated by solvent casting method. In vitro skin permeation kinetics study of DDC (2',3'-dideoxythymidine), DDI (2',3'-dideoxyinosine) and AZT (3'-azido-3'-deoxythymidine) across the (membrane/skin) composite was conducted for 24 hours at $37^{\circ}C$ using the Valia-Chien skin permeation system. The results showed that skin permeation rate of each drug across the (skin/membrane) composite was mainly dependent on the property of the membrane. Proper selection of the polymeric membrane which resembles hydrophilicity/lipophilicity of the delivering drug was important in controlling the skin permeation rate.

  • PDF

An Experimental Study on Mortar Beam Stengthened by Composite Material (모르타르 보의 복합재료 보강 효과에 관한 실험적 연구)

  • 차승환;정일섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • Excellent environmental durability and handy installation procedure as well as high specific strength and stiffness have introduced fiber-reinforced polymeric composite materials into the civil and architectural engineering field. This study presents the considerably enhanced strength characteristics of the mortal beams by being reinforced with epoxy-bonded carbon fiber sheets(CFS). Three point bending and Charpy impact tests were performed on both of bare and reinforced mortar specimens. The influences of length, and the number of reinforcing plies were investigated. Strength reduction due to pre-existent notch was lessened dramatically. The acoustic emission(AE) measurement revealed the progressive damage process in reinforced specimens.

  • PDF