• Title/Summary/Keyword: Polymer waveguide

Search Result 135, Processing Time 0.021 seconds

Analysis of electro-optic polymer digital optical switch with a coupling region modified for optimum mode coupling (최적의 모드 결합을 얻기 위해 수정된 결합 영역을 갖는 전기광학 폴리머 디지탈 광스위치의 해석)

  • 이상신;신상영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.87-93
    • /
    • 1997
  • An electro-optic polymer digital optical switch with a coupling region modified for optimum mode coupling is proposed, and it is analyzed by using the beam propagation method combined with the effective index method. Its modified coupling region is adiabatically introduced along the propagation direction from the branching point of the two waveguides. The structure of the modified coupling region and its refractive index profiles are designed to optimize the mode coupling in the Y-branch waveguide. Therefor, the switching performance of the device may be enhanced with a fixed device length. It is confirmed from the numerical calculation that the drive voltage is reduced by more than 30 percents and te crosstalk is improved by about 8dB.

  • PDF

Optimization of Tilted Bragg Grating Tunable Filters Based on Polymeric Optical Waveguides

  • Park, Tae-Hyun;Huang, Guanghao;Kim, Eon-Tae;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.214-220
    • /
    • 2017
  • A wavelength filter based on a polymer Bragg reflector has received much attention due to its simple structure and wide tuning range. Tilted Bragg gratings and asymmetric Y-branches are integrated to extract the reflected optical signals in different directions. To optimize device performance, design procedures are thoroughly considered and various design parameters are applied to fabricated devices. An asymmetric Y-branch with an angle of $0.3^{\circ}$ produced crosstalk less than -25 dB, and the even-odd mode coupling was optimized for a grating tilt angle of $2.5^{\circ}$, which closely followed the design results. Through this experiment, it was confirmed that this device has a large manufacturing tolerance, which is important for mass production of this optical device.

Sensitivity Characteristics of Side-Polished Fiber Optic UV Sensor with Optical Intensity Variation (측면연마 광섬유형 자외선센서의 광강도 변화에 따른 감도특성)

  • Lee, Dong-Rok;Seo, Gyoo-Won;Yoon, Jong-Kuk;Cho, Kang-Min;Kang, Shin-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.53-58
    • /
    • 2004
  • A novel UV sensor was manufactured and characterized using evanescent field coupling between photochromic dye dispersed polymer waveguide and side polished fiber. The spiroxazine (photochromic dye) dispersed polymer was used as planar waveguides. The resonant wavelength was shifted owing to refractive index variation of planar waveguide on exposed UV because of its photo-functional properties. The sensitivities are $1.21{\mu}W/mw$ and $2.75{\mu}W/mw$ when UV intensities increased after exposure times were fixed at 3 seconds and 5 seconds, respectively. Output optical power according to UV intensity increases and saturation time decreases as the intensity of UV radiations increases.

Polymer Waveguide Apodized Grating for Narrow-Bandwidth High-Reflectivity Wavelength Filters (협대역 고반사 파장 필터 구현을 위한 폴리머 광도파로 에포다이즈드 격자)

  • Lee, Won-Jun;Huang, Guanghao;Shin, Jin-Soo;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.203-208
    • /
    • 2015
  • Wavelength filters are essential components for selecting a certain wavelength channel of a WDM optical communication system. To realize wavelength filters with narrow bandwidth and high reflectivity, an apodized grating structure with length of 15 mm and index modulation of $5{\times}10^{-4}$ was designed. The device exhibited a reflectivity of 95%, 3-dB bandwidth of 0.28 nm, and 20-dB bandwidth of 0.70 nm on an 18 mm grating length.

Hybrid-integrated Tunable Laser Diode Using Polymer Coupled-ring Reflector (폴리머 결합 링 반사기를 이용한 하이브리드 집적 파장 가변 레이저)

  • Park, Joon-Oh;Lee, Tae-Hyung;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.219-223
    • /
    • 2008
  • To realize a widely tunable laser diode, a polymer coupled-ring reflector is hybrid- integrated with reflective semiconductor optical amplifier. Even though ring-ring and ring-bus coupling ratios are changed by fabrication errors in waveguide width and height, they remain very close to the single peak condition, ensuring high yield in fabrication. The tuning range is observed to be about 35 nm, maintaining the side mode suppression ratio of about 30 dB.

Design and Fabrication of Variable Optical Signal Delay Line Based on Polymer Coupled Ring Resonators (폴리머 결합 링 공진기 기반 가변 광신호 지연기의 설계 및 제작)

  • Kwon, Oh-Sang;Kim, Jae-Seong;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.256-261
    • /
    • 2011
  • In this paper, a variable optical signal delay line based on coupled ring resonators is designed and fabricated in high-index contrast polymer material. The free spectral ranges (FSR) of the rings are designed to be 100 GHz, and 8 coupled rings are used. When two rings near a bus waveguide are in resonance, the optical delay is measured to be about 100 ps. When four rings are in resonance, the measured delay is about 180 ps. Both are close to the theoretical calculations.

Optical Packaging and Interconnection Technology (광 패키징 및 인터커넥션 기술)

  • Kim, Dong Min;Ryu, Jin Hwa;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2012
  • By the need for high-speed data transmission in PCB, the studies on the optical PCB has been conducted with optical interconnection and its packaging technology. Particularly, the polymer-based optical interconnection has been extensively studied with the advantages such as cost-effective and ease of process. For high-efficiency and passive alignment, the studies were performed using the 45 degree mirrors, MT connector, and etc. In this work, integrated PLC device and fiber alignment array block was fabricated by using imprint technology to solve the alignment and array problem of optical device and the optical fiber. The fabricated integrated block for optical interconnection of PLC device has achieved higher precision of decreasing the dimensional error of the patterns by optimization of process and its insertion loss has an average value of 4.03dB, lower than criteria specified by international standard. In addition, a optical waveguide with built-in lens has been proposed for high-efficiency and passive alignment. By simulation, it was confirmed that the proposed structure has higher coupling efficiency than conventional no-lens structure and has the broad tolerance for the spatial offset of optical waveguide.

Polymeric digital optical switch with a coupling region modified for optimum mode coupling (모드 결합을 최적화 하기 위해 수정된 결합 영역을 갖는 전기광학 폴리머 디지탈 광스위치)

  • 이상신;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.245-249
    • /
    • 1997
  • An electro-optic polymer digital optical switch with a coupling region modified for optimum coupling is designed and demonstrated. Its branch waveguide is fabricated by reactive ion etching. Then, the modified coupling region is adiabatically introduced along the propagation direction from the branching point of the two waveguides, and it is implemented by photobleaching after the device fabrication. The structure of the modified coupling region and its refractive index profiles are designed to optimize and mode coupling in the Y-branch waveguide. Therefore, the switching performance of the device was shown to be enhanced with a fixed device length. The measured drive voltage is reduced by more than 30 percents, and the crosstalk is also improved by about 4~6 dB.

  • PDF

Polymeric Ring Resonator with Variable Extinction Ratio (소멸비가 가변되는 폴리머 링 레조네이터)

  • Song, Ju-Han;Kim, Do-Hwan;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.342-346
    • /
    • 2006
  • A polymeric ring resonator with electrically variable extinction ratio at resonant wavelengths has been proposed and demonstrated. It consists of a ring waveguide coupled to a straight bus waveguide and a modulating electrode, which is formed in the outer cladding region outside of the ring. When electrical power is applied to the electrode, the refractive index of the polymers underneath the electrode is lowered to strengthen the confinement of the guided mode of the ring and thus the equivalent effective refractive index felt by the mode is decreased. Therefore, the propagation loss of the guided mode is reduced with the applied electrical power Consequently the extinction ratio at resonant wavelengths is varied by the electrical power. For the achieved results, the extinction ratio was changed by about 9 dB for the electrical power of 12 mW, when the propagation loss of the ring was reduced by 80 dB/cm.

Fiber optic temperature sensor using evanescent field coupling of the thermo-optic polymer planar waveguide (열광학 폴리머 평면도파로의 소산장결합을 이용한 광섬유형 온도센서)

  • Kim, Si-Hong;Jung, Woong-Gyu;Kim, Kwang-Tack;Song, Jae-Won;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • Optical fiber temperature sensor, using resonance wavelength shifting of single mode fiber-to-planar waveguide coupler by heat, was fabricated. Thermo-optic polymers, have large change of refractive index due to heat, were used for planar waveguide. The device fabrication procedure including fiber polishing steps was illustrated and the device structure with independent polarization was demonstrated experimentally. The resonance wavelength difference of fabricated device was less than 2nm. The resonance wavelength shifting owing to temperature variation, from room temperature($24^{\circ}C$) to $90^{\circ}C$, was showed $-0.54nm/^{\circ}C$, $-3nm/^{\circ}C$.

  • PDF