• Title/Summary/Keyword: Polymer viscosity

Search Result 662, Processing Time 0.03 seconds

Effect of Carbon Black Concentration and Monomer Compositional Ratio on the Flow Behavior of Copoly(styrene/butyl methacrylate) Particles (카본블랙의 농도 및 단량체 구성비에 따른 스티렌-부틸메타크릴레이트 공중합체 입자의 유동성)

  • Park, Moon-Soo;Moon, Ji-Yeon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • We measured shear viscosity of copoly(styrene(St)/butyl methacrylate(BMA)) (co-PSB) particles, with a capillary rheometer at $170^{\circ}C$, prepared by suspension polymerization with hydrophobic silica as a stabilizer. co-PSB particles with the weight average molecular weights of lower than 74,800 g/mol displayed a Newtonian behavior at low shear rates. With the weight average molecular weight exceeding 136,800 g/mol, co-PSB particles showed shear thinning against shear rates and the absolute value of the slopes between shear viscosity vs. shear rate increased. When the ratio between St and BMA changed from 7/3 to 5/5 to 3/7, shear viscosity and glass transition decreased despite similar molecular weights. When the ratio was 1/9, it showed a large increase in initial shear viscosity despite reduced glass transition. Shear viscosity exhibited an increase in proportion to carbon black concentration. The effect of carbon black concentration on the shear viscosity of co-PSB composites was less pronounced compared to varying molecular weights and/or compositional ratio.

Rheological Properties of Polyurethane Modified with Polyorganosiloxane (Polyorganosiloxane 변성 폴리우레탄의 유변 특성)

  • 한정우;한미선;이상문;박태석;강두환
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2002
  • Polyorganosiloxane(HBPS) modified polyurethane (UMPS) was synthesized to improve weatherability in the polyurethane (ITPU) sealant and its rheological propoerty was investigated. It was found that the viscosity increased with increasing HBPS content in polyurethane and maximum viscosity was observed in UMPS having 70/30 ITPU/HBPS ratio. This was understood that the segregation of HBPS segment in UMPS chain has been developed. Further increasing of the content of HBPS resulted in the lowering of viscosity because of the flexibility of HBPS block segment in UMPS chain. It was also found that UMPS has more sensitive environmental dependency of viscosity than ITPU such as shear rate, humidity and temperature. In additions, UMPS having Si(O$CH_3$)$_3$ end group (TUMPS) by adding coupling agent up to 0.3 wt% resulted in the increase of viscosity by the acceleration of curing. But introducing more than 0.5wt% curing agent to TUMPS caused the lowering of viscosity because of less NCO group in TUMPS for the curing.

Effect of Kaolinite Treated with Silane Coupling Agent on the Reinforcement of SBR (SBR에 대한 Silane Coupling Agent 처리한 Kaolinite의 보강효과에 관한 연구)

  • Kim, Ki-Joo;Kim, Jong-Seok;Ahn, Byung-Kook;Choi, Hyoung-Jin;Chang, Young-Jae
    • Elastomers and Composites
    • /
    • v.25 no.4
    • /
    • pp.280-290
    • /
    • 1990
  • The effect of surface treatment of kaolinite with silane coupling agent on the reinforcement of SBR was investigated. The possibility of the practical use of kaolinite as an organic filler was also scrutinized and it was found that the reinforcement of SBR was improved by modifying surface of the cheap inactive inorganic filler with organic silane coupling agents. 3-Chloropropyltrimethoxysilane(C-series), 3-mercaptopropyltrimethoxysilane(M-series) and 3-aminopropyltriethoxysilane(A-series) were used as coupling agents. To test the material properties of vulcanized and unvulcanized SBR, Mooney viscosity, modulus, elongation and fractured surface measurements by SEM were carried out by changing the amount of silane coupling agents. Torqe of the unvulcanized SBR following the measurement of the degree of vulcanization was to be increased as the amount of silane was increasing, and Mooney viscosity of M-series and A-series was also increased.

  • PDF

A comparative analysis of sheeting die geometries using numerical simulations

  • Igali, Dastan;Wei, Dongming;Zhang, Dichuan;Perveen, Asma
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.111-125
    • /
    • 2020
  • The flow behavior of polymer melts within a slit die is an important consideration when designing a die geometry. The quality of the extruded polymer product can be determined through an evaluation of the flow homogeneity, wall shear rate and pressure drop across the central height of the die. However, mathematical formulations cannot fully determine the behavior of the flow due to the complex nature of fluid dynamics and the nonlinear physical properties of the polymer melts. This paper examines two slit die geometries in terms of outlet velocity uniformity, shear rate uniformity at the walls and pressure drop by using the licensed computational fluid dynamics package, Ansys POLYFLOW, based on the finite element method. The Carreau-Yasuda viscosity model was used for the rheological properties of the polypropylene. Comparative analysis of the simulation results will conclude that the modified die design performs better in all three aspects providing uniform exit velocity, uniform wall shear rates, and lower pressure drop.

Effect of Rubber on Microcellular Structures from High Internal Phase Emulsion Polymerization

  • Park, Ji-Sun;Chun, Byoung-Chul;Lee, Seong-Jae
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • A microcellular, which combines a rubber with the conventional formulation of styrene/divinylbenzene/sorbitan monooleate/water system, was prepared using high internal phase emulsion (HIPE) polymerization. Although the open microcellular foam with low density from the conventional HIPE polymerization shows highly porous characteristics with fine, regular and isotropic structure, the one having much smaller cell size is desirable for various applications. In this study, a polybutadiene was introduced to reduce the cell size with comparable properties. Major interests were focused on the effects of rubber concentration and agitation speed on the cell sizes and compression properties. Scanning electron microscopy was used to observe the microcellular morphology and compression tests were conducted to evaluate the stress-strain behaviors. It was found that the cell size decreased as rubber concentration increased, reflecting a competition between the higher viscosity of continuous phase and the lower viscosity ratio of dispersed to continuous phases due to the addition of high molecular weight rubber into the oil phase of emulsion. A correlation for the average cell size depending on agitation speed was attempted and the result was quite satisfactory.

Characteristics of Nylon6/Ionomer Semi IPN for Molded-In-Color Compound (나일론6/이오노머 Semi IPN의 몰드-인-칼라 수지 특성 연구)

  • Lee, Ja-Hun;Hwang, Jin-Taek;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.407-412
    • /
    • 2012
  • The characteristics of nylon6/ionomer semi interpenetrating networks (IPN) as a molded-in-color (MIC) compound had been studied, and comparison was made with nylon6/ionomer blends. Nylon6/ionomer semi IPN shows better homogeneity in phase morphology than nylon6/ionomer blend, and it caused better anti-scratching performance than the blend. This semi IPN structure resulted in lowered crystallization rate, increased melt viscosity and less temperature dependency of viscosity. As a result, we may expect the enhancement of melt processing characteristics in an injection molding process using nylon6/ionomer semi IPN as a MIC compound.

Influence of Amine Base Dispersing Agent on Properties of Silica Filled Rubber Compounds (아민계 분산제가 실리카 고무배합물의 물성에 미치는 영향)

  • Park, Sung-Soo;Kil, Sang-Gyu;Jang, Byung-Man;Song, Ki-Chan;Kim, Su-Kyung
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.503-511
    • /
    • 2001
  • Present silica dispersing agents are based mainly on fatty acid derivatives of Zn, K and mixture of fatty acid and metallic soaps are used to increase activity. The viscosity of silica filled rubber is lowered by Zn-K soap type silica dispersing agent, thus fluidity of hydrocarbon chains and processibility is improved. Silica dispersing agent should not exert an influence on chracteristics of vulcanization. But scorch and curing time is shortened by Zn-K soap type silica dispersing agent. A newly developed silica dispersing agent, which is a nonmetal type agent, reduced the viscosity and hardness of silica compounding rubber, and the highly increased degree of dispersion of silica is caused by interaction of silica and rubber. Also it did not affect the curing characteristics and scorch stability of silica compounding rubber.

  • PDF

Properties and Environmental Effects Estimation of Grout Using Set Accelerating Agent Made From Calcium Aluminate and Viscosity Agent (칼슘알루미네이트계 급결재와 증점제를 사용한 그라우트의 특성 및 환경영향 평가)

  • Heo, Hyung Seok;Yi, Seong Tae;Noh, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.122-129
    • /
    • 2012
  • In this study, environmental problems(i.e., pH elevation and $Cr^{6+}$ detection) occurred by using the cement grout made from CA(calcium aluminate) were evaluated using viscosity agents(MC, chelate polymer). Ordinary portland cement and blaste-furnace slag cement were used by main materials and ACC(blended mixture of calcium aluminate) were used by accelerator for hardening of grout. In addition, viscosity agents were used for preventing pH elevation and heavy metal detection from grouting materials. From the results, it was noted that when chelate polymer was used, pH elevation and $Cr^{6+}$ detection were minimized. However, other cases showed higher pH elevation and $Cr^{6+}$ detection. At test 1 day, $Cr^{6+}$ detection with age presented over 97% of total value and, after that, additional increase was not distinct. As a result of this study, it was acknowledged that, to control pH elevation and heavy-metal (like $Cr^{6+}$) detection, the usage of BSC and chelate polymer is a very useful fact.

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

  • Kim, Hongkyeong;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Rheological behavior of thermoset/thermoplastic blends of epoxy/polyethersulphone (PES) was monitored during curing of the epoxy resin. During the isothermal curing of the mixture, a fluctuation in viscosity just before the abrupt viscosity increase was observed. This fluctuation is found to be due to the phase separation of PES from the matrix epoxy resin during the curing. The experimentally observed viscosity fluctuation is simulated with a simple two phase suspension model in terms of the increase in domain size. The viscosity profiles obtained experimentally at different isothermal curing temperatures are in good agreement with the predictions from the simple model taking into account the viscosity change due to the growth of PES domain and the network formation of the epoxy matrix.

  • PDF

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF